|
| 1 | +"""Update operations for read-only arrays.""" |
| 2 | + |
| 3 | +# https://github.com/scikit-learn/scikit-learn/pull/27910#issuecomment-2568023972 |
| 4 | +from __future__ import annotations |
| 5 | + |
| 6 | +import operator |
| 7 | +from collections.abc import Callable |
| 8 | +from enum import Enum |
| 9 | +from types import ModuleType |
| 10 | +from typing import ClassVar, cast |
| 11 | + |
| 12 | +from ._utils._compat import array_namespace, is_jax_array, is_writeable_array |
| 13 | +from ._utils._typing import Array, Index |
| 14 | + |
| 15 | + |
| 16 | +class _AtOp(Enum): |
| 17 | + """Operations for use in `xpx.at`.""" |
| 18 | + |
| 19 | + SET = "set" |
| 20 | + ADD = "add" |
| 21 | + SUBTRACT = "subtract" |
| 22 | + MULTIPLY = "multiply" |
| 23 | + DIVIDE = "divide" |
| 24 | + POWER = "power" |
| 25 | + MIN = "min" |
| 26 | + MAX = "max" |
| 27 | + |
| 28 | + # @override from Python 3.12 |
| 29 | + def __str__(self) -> str: # type: ignore[explicit-override] # pyright: ignore[reportImplicitOverride] |
| 30 | + """ |
| 31 | + Return string representation (useful for pytest logs). |
| 32 | +
|
| 33 | + Returns |
| 34 | + ------- |
| 35 | + str |
| 36 | + The operation's name. |
| 37 | + """ |
| 38 | + return self.value |
| 39 | + |
| 40 | + |
| 41 | +_undef = object() |
| 42 | + |
| 43 | + |
| 44 | +class at: # pylint: disable=invalid-name # numpydoc ignore=PR02 |
| 45 | + """ |
| 46 | + Update operations for read-only arrays. |
| 47 | +
|
| 48 | + This implements ``jax.numpy.ndarray.at`` for all writeable |
| 49 | + backends (those that support ``__setitem__``) and routes |
| 50 | + to the ``.at[]`` method for JAX arrays. |
| 51 | +
|
| 52 | + Parameters |
| 53 | + ---------- |
| 54 | + x : array |
| 55 | + Input array. |
| 56 | + idx : index, optional |
| 57 | + Only `array API standard compliant indices |
| 58 | + <https://data-apis.org/array-api/latest/API_specification/indexing.html>`_ |
| 59 | + are supported. |
| 60 | +
|
| 61 | + You may use two alternate syntaxes:: |
| 62 | +
|
| 63 | + >>> import array_api_extra as xpx |
| 64 | + >>> xpx.at(x, idx).set(value) # or add(value), etc. |
| 65 | + >>> xpx.at(x)[idx].set(value) |
| 66 | +
|
| 67 | + copy : bool, optional |
| 68 | + None (default) |
| 69 | + The array parameter *may* be modified in place if it is |
| 70 | + possible and beneficial for performance. |
| 71 | + You should not reuse it after calling this function. |
| 72 | + True |
| 73 | + Ensure that the inputs are not modified. |
| 74 | + False |
| 75 | + Ensure that the update operation writes back to the input. |
| 76 | + Raise ``ValueError`` if a copy cannot be avoided. |
| 77 | +
|
| 78 | + xp : array_namespace, optional |
| 79 | + The standard-compatible namespace for `x`. Default: infer. |
| 80 | +
|
| 81 | + Returns |
| 82 | + ------- |
| 83 | + Updated input array. |
| 84 | +
|
| 85 | + Warnings |
| 86 | + -------- |
| 87 | + (a) When you omit the ``copy`` parameter, you should never reuse the parameter |
| 88 | + array later on; ideally, you should reassign it immediately:: |
| 89 | +
|
| 90 | + >>> import array_api_extra as xpx |
| 91 | + >>> x = xpx.at(x, 0).set(2) |
| 92 | +
|
| 93 | + The above best practice pattern ensures that the behaviour won't change depending |
| 94 | + on whether ``x`` is writeable or not, as the original ``x`` object is dereferenced |
| 95 | + as soon as ``xpx.at`` returns; this way there is no risk to accidentally update it |
| 96 | + twice. |
| 97 | +
|
| 98 | + On the reverse, the anti-pattern below must be avoided, as it will result in |
| 99 | + different behaviour on read-only versus writeable arrays:: |
| 100 | +
|
| 101 | + >>> x = xp.asarray([0, 0, 0]) |
| 102 | + >>> y = xpx.at(x, 0).set(2) |
| 103 | + >>> z = xpx.at(x, 1).set(3) |
| 104 | +
|
| 105 | + In the above example, both calls to ``xpx.at`` update ``x`` in place *if possible*. |
| 106 | + This causes the behaviour to diverge depending on whether ``x`` is writeable or not: |
| 107 | +
|
| 108 | + - If ``x`` is writeable, then after the snippet above you'll have |
| 109 | + ``x == y == z == [2, 3, 0]`` |
| 110 | + - If ``x`` is read-only, then you'll end up with |
| 111 | + ``x == [0, 0, 0]``, ``y == [2, 0, 0]`` and ``z == [0, 3, 0]``. |
| 112 | +
|
| 113 | + The correct pattern to use if you want diverging outputs from the same input is |
| 114 | + to enforce copies:: |
| 115 | +
|
| 116 | + >>> x = xp.asarray([0, 0, 0]) |
| 117 | + >>> y = xpx.at(x, 0).set(2, copy=True) # Never updates x |
| 118 | + >>> z = xpx.at(x, 1).set(3) # May or may not update x in place |
| 119 | + >>> del x # avoid accidental reuse of x as we don't know its state anymore |
| 120 | +
|
| 121 | + (b) The array API standard does not support integer array indices. |
| 122 | + The behaviour of update methods when the index is an array of integers is |
| 123 | + undefined and will vary between backends; this is particularly true when the |
| 124 | + index contains multiple occurrences of the same index, e.g.:: |
| 125 | +
|
| 126 | + >>> import numpy as np |
| 127 | + >>> import jax.numpy as jnp |
| 128 | + >>> import array_api_extra as xpx |
| 129 | + >>> xpx.at(np.asarray([123]), np.asarray([0, 0])).add(1) |
| 130 | + array([124]) |
| 131 | + >>> xpx.at(jnp.asarray([123]), jnp.asarray([0, 0])).add(1) |
| 132 | + Array([125], dtype=int32) |
| 133 | +
|
| 134 | + See Also |
| 135 | + -------- |
| 136 | + jax.numpy.ndarray.at : Equivalent array method in JAX. |
| 137 | +
|
| 138 | + Notes |
| 139 | + ----- |
| 140 | + `sparse <https://sparse.pydata.org/>`_, as well as read-only arrays from libraries |
| 141 | + not explicitly covered by ``array-api-compat``, are not supported by update |
| 142 | + methods. |
| 143 | +
|
| 144 | + Examples |
| 145 | + -------- |
| 146 | + Given either of these equivalent expressions:: |
| 147 | +
|
| 148 | + >>> import array_api_extra as xpx |
| 149 | + >>> x = xpx.at(x)[1].add(2) |
| 150 | + >>> x = xpx.at(x, 1).add(2) |
| 151 | +
|
| 152 | + If x is a JAX array, they are the same as:: |
| 153 | +
|
| 154 | + >>> x = x.at[1].add(2) |
| 155 | +
|
| 156 | + If x is a read-only numpy array, they are the same as:: |
| 157 | +
|
| 158 | + >>> x = x.copy() |
| 159 | + >>> x[1] += 2 |
| 160 | +
|
| 161 | + For other known backends, they are the same as:: |
| 162 | +
|
| 163 | + >>> x[1] += 2 |
| 164 | + """ |
| 165 | + |
| 166 | + _x: Array |
| 167 | + _idx: Index |
| 168 | + __slots__: ClassVar[tuple[str, ...]] = ("_idx", "_x") |
| 169 | + |
| 170 | + def __init__( |
| 171 | + self, x: Array, idx: Index = _undef, / |
| 172 | + ) -> None: # numpydoc ignore=GL08 |
| 173 | + self._x = x |
| 174 | + self._idx = idx |
| 175 | + |
| 176 | + def __getitem__(self, idx: Index, /) -> at: # numpydoc ignore=PR01,RT01 |
| 177 | + """ |
| 178 | + Allow for the alternate syntax ``at(x)[start:stop:step]``. |
| 179 | +
|
| 180 | + It looks prettier than ``at(x, slice(start, stop, step))`` |
| 181 | + and feels more intuitive coming from the JAX documentation. |
| 182 | + """ |
| 183 | + if self._idx is not _undef: |
| 184 | + msg = "Index has already been set" |
| 185 | + raise ValueError(msg) |
| 186 | + return at(self._x, idx) |
| 187 | + |
| 188 | + def _update_common( |
| 189 | + self, |
| 190 | + at_op: _AtOp, |
| 191 | + y: Array, |
| 192 | + /, |
| 193 | + copy: bool | None, |
| 194 | + xp: ModuleType | None, |
| 195 | + ) -> tuple[Array, None] | tuple[None, Array]: # numpydoc ignore=PR01 |
| 196 | + """ |
| 197 | + Perform common prepocessing to all update operations. |
| 198 | +
|
| 199 | + Returns |
| 200 | + ------- |
| 201 | + tuple |
| 202 | + If the operation can be resolved by ``at[]``, ``(return value, None)`` |
| 203 | + Otherwise, ``(None, preprocessed x)``. |
| 204 | + """ |
| 205 | + x, idx = self._x, self._idx |
| 206 | + |
| 207 | + if idx is _undef: |
| 208 | + msg = ( |
| 209 | + "Index has not been set.\n" |
| 210 | + "Usage: either\n" |
| 211 | + " at(x, idx).set(value)\n" |
| 212 | + "or\n" |
| 213 | + " at(x)[idx].set(value)\n" |
| 214 | + "(same for all other methods)." |
| 215 | + ) |
| 216 | + raise ValueError(msg) |
| 217 | + |
| 218 | + if copy not in (True, False, None): |
| 219 | + msg = f"copy must be True, False, or None; got {copy!r}" |
| 220 | + raise ValueError(msg) |
| 221 | + |
| 222 | + if copy is None: |
| 223 | + writeable = is_writeable_array(x) |
| 224 | + copy = not writeable |
| 225 | + elif copy: |
| 226 | + writeable = None |
| 227 | + else: |
| 228 | + writeable = is_writeable_array(x) |
| 229 | + |
| 230 | + if copy: |
| 231 | + if is_jax_array(x): |
| 232 | + # Use JAX's at[] |
| 233 | + func = cast(Callable[[Array], Array], getattr(x.at[idx], at_op.value)) |
| 234 | + return func(y), None |
| 235 | + # Emulate at[] behaviour for non-JAX arrays |
| 236 | + # with a copy followed by an update |
| 237 | + if xp is None: |
| 238 | + xp = array_namespace(x) |
| 239 | + x = xp.asarray(x, copy=True) |
| 240 | + if writeable is False: |
| 241 | + # A copy of a read-only numpy array is writeable |
| 242 | + # Note: this assumes that a copy of a writeable array is writeable |
| 243 | + writeable = None |
| 244 | + |
| 245 | + if writeable is None: |
| 246 | + writeable = is_writeable_array(x) |
| 247 | + if not writeable: |
| 248 | + # sparse crashes here |
| 249 | + msg = f"Can't update read-only array {x}" |
| 250 | + raise ValueError(msg) |
| 251 | + |
| 252 | + return None, x |
| 253 | + |
| 254 | + def set( |
| 255 | + self, |
| 256 | + y: Array, |
| 257 | + /, |
| 258 | + copy: bool | None = None, |
| 259 | + xp: ModuleType | None = None, |
| 260 | + ) -> Array: # numpydoc ignore=PR01,RT01 |
| 261 | + """Apply ``x[idx] = y`` and return the update array.""" |
| 262 | + res, x = self._update_common(_AtOp.SET, y, copy=copy, xp=xp) |
| 263 | + if res is not None: |
| 264 | + return res |
| 265 | + assert x is not None |
| 266 | + x[self._idx] = y |
| 267 | + return x |
| 268 | + |
| 269 | + def _iop( |
| 270 | + self, |
| 271 | + at_op: _AtOp, |
| 272 | + elwise_op: Callable[[Array, Array], Array], |
| 273 | + y: Array, |
| 274 | + /, |
| 275 | + copy: bool | None, |
| 276 | + xp: ModuleType | None, |
| 277 | + ) -> Array: # numpydoc ignore=PR01,RT01 |
| 278 | + """ |
| 279 | + ``x[idx] += y`` or equivalent in-place operation on a subset of x. |
| 280 | +
|
| 281 | + which is the same as saying |
| 282 | + x[idx] = x[idx] + y |
| 283 | + Note that this is not the same as |
| 284 | + operator.iadd(x[idx], y) |
| 285 | + Consider for example when x is a numpy array and idx is a fancy index, which |
| 286 | + triggers a deep copy on __getitem__. |
| 287 | + """ |
| 288 | + res, x = self._update_common(at_op, y, copy=copy, xp=xp) |
| 289 | + if res is not None: |
| 290 | + return res |
| 291 | + assert x is not None |
| 292 | + x[self._idx] = elwise_op(x[self._idx], y) |
| 293 | + return x |
| 294 | + |
| 295 | + def add( |
| 296 | + self, |
| 297 | + y: Array, |
| 298 | + /, |
| 299 | + copy: bool | None = None, |
| 300 | + xp: ModuleType | None = None, |
| 301 | + ) -> Array: # numpydoc ignore=PR01,RT01 |
| 302 | + """Apply ``x[idx] += y`` and return the updated array.""" |
| 303 | + |
| 304 | + # Note for this and all other methods based on _iop: |
| 305 | + # operator.iadd and operator.add subtly differ in behaviour, as |
| 306 | + # only iadd will trigger exceptions when y has an incompatible dtype. |
| 307 | + return self._iop(_AtOp.ADD, operator.iadd, y, copy=copy, xp=xp) |
| 308 | + |
| 309 | + def subtract( |
| 310 | + self, |
| 311 | + y: Array, |
| 312 | + /, |
| 313 | + copy: bool | None = None, |
| 314 | + xp: ModuleType | None = None, |
| 315 | + ) -> Array: # numpydoc ignore=PR01,RT01 |
| 316 | + """Apply ``x[idx] -= y`` and return the updated array.""" |
| 317 | + return self._iop(_AtOp.SUBTRACT, operator.isub, y, copy=copy, xp=xp) |
| 318 | + |
| 319 | + def multiply( |
| 320 | + self, |
| 321 | + y: Array, |
| 322 | + /, |
| 323 | + copy: bool | None = None, |
| 324 | + xp: ModuleType | None = None, |
| 325 | + ) -> Array: # numpydoc ignore=PR01,RT01 |
| 326 | + """Apply ``x[idx] *= y`` and return the updated array.""" |
| 327 | + return self._iop(_AtOp.MULTIPLY, operator.imul, y, copy=copy, xp=xp) |
| 328 | + |
| 329 | + def divide( |
| 330 | + self, |
| 331 | + y: Array, |
| 332 | + /, |
| 333 | + copy: bool | None = None, |
| 334 | + xp: ModuleType | None = None, |
| 335 | + ) -> Array: # numpydoc ignore=PR01,RT01 |
| 336 | + """Apply ``x[idx] /= y`` and return the updated array.""" |
| 337 | + return self._iop(_AtOp.DIVIDE, operator.itruediv, y, copy=copy, xp=xp) |
| 338 | + |
| 339 | + def power( |
| 340 | + self, |
| 341 | + y: Array, |
| 342 | + /, |
| 343 | + copy: bool | None = None, |
| 344 | + xp: ModuleType | None = None, |
| 345 | + ) -> Array: # numpydoc ignore=PR01,RT01 |
| 346 | + """Apply ``x[idx] **= y`` and return the updated array.""" |
| 347 | + return self._iop(_AtOp.POWER, operator.ipow, y, copy=copy, xp=xp) |
| 348 | + |
| 349 | + def min( |
| 350 | + self, |
| 351 | + y: Array, |
| 352 | + /, |
| 353 | + copy: bool | None = None, |
| 354 | + xp: ModuleType | None = None, |
| 355 | + ) -> Array: # numpydoc ignore=PR01,RT01 |
| 356 | + """Apply ``x[idx] = minimum(x[idx], y)`` and return the updated array.""" |
| 357 | + if xp is None: |
| 358 | + xp = array_namespace(self._x) |
| 359 | + y = xp.asarray(y) |
| 360 | + return self._iop(_AtOp.MIN, xp.minimum, y, copy=copy, xp=xp) |
| 361 | + |
| 362 | + def max( |
| 363 | + self, |
| 364 | + y: Array, |
| 365 | + /, |
| 366 | + copy: bool | None = None, |
| 367 | + xp: ModuleType | None = None, |
| 368 | + ) -> Array: # numpydoc ignore=PR01,RT01 |
| 369 | + """Apply ``x[idx] = maximum(x[idx], y)`` and return the updated array.""" |
| 370 | + if xp is None: |
| 371 | + xp = array_namespace(self._x) |
| 372 | + y = xp.asarray(y) |
| 373 | + return self._iop(_AtOp.MAX, xp.maximum, y, copy=copy, xp=xp) |
0 commit comments