|
| 1 | +--- |
| 2 | +id: nth-root-of-m |
| 3 | +title: Nth root of M |
| 4 | +sidebar_label: Nth-root-of-M |
| 5 | +tags: |
| 6 | + - Mathematical |
| 7 | + - Algorithm |
| 8 | +description: "This tutorial covers the solution to the Nth root of M problem from the GeeksforGeeks." |
| 9 | +--- |
| 10 | +## Problem Description |
| 11 | +You are given 2 numbers `(n, m)`; the task is to find `n√m` (`nth` root of `m`). |
| 12 | + |
| 13 | + |
| 14 | +## Examples |
| 15 | + |
| 16 | +**Example 1:** |
| 17 | + |
| 18 | +``` |
| 19 | +Input: n = 2, m = 9 |
| 20 | +Output: 3 |
| 21 | +Explanation: 3^2 = 9 |
| 22 | +``` |
| 23 | + |
| 24 | +**Example 2:** |
| 25 | + |
| 26 | +``` |
| 27 | +Input: n = 3, m = 9 |
| 28 | +Output: -1 |
| 29 | +Explanation: 3rd root of 9 is not |
| 30 | +integer. |
| 31 | +``` |
| 32 | + |
| 33 | +## Your Task |
| 34 | + |
| 35 | +You don't need to read or print anyhting. Your task is to complete the function NthRoot() which takes n and m as input parameter and returns the nth root of m. If the root is not integer then returns -1. |
| 36 | + |
| 37 | + |
| 38 | +## Constraints |
| 39 | + |
| 40 | +* `1 <= n <= 30` |
| 41 | +* `1 <= m <= 10^9` |
| 42 | + |
| 43 | +## Problem Explanation |
| 44 | +You are given 2 numbers (n , m); the task is to find n√m (nth root of m). |
| 45 | + |
| 46 | +## Code Implementation |
| 47 | + |
| 48 | +<Tabs> |
| 49 | + <TabItem value="Python" label="Python" default> |
| 50 | + <SolutionAuthor name="@arunimad6yuq"/> |
| 51 | + |
| 52 | + ```py |
| 53 | + import math |
| 54 | + |
| 55 | +n = 3 |
| 56 | +m = 27 |
| 57 | +result = m ** (1/n) |
| 58 | +print(result) |
| 59 | + |
| 60 | + ``` |
| 61 | + |
| 62 | + </TabItem> |
| 63 | + <TabItem value="C++" label="C++"> |
| 64 | + <SolutionAuthor name="@YourUsername"/> |
| 65 | + |
| 66 | + ```cpp |
| 67 | + #include <cmath> |
| 68 | +#include <iostream> |
| 69 | + |
| 70 | +int main() { |
| 71 | + int n = 3; |
| 72 | + int m = 27; |
| 73 | + double result = pow(m, 1.0 / n); |
| 74 | + std::cout << result << std::endl; |
| 75 | + return 0; |
| 76 | +} |
| 77 | + |
| 78 | + ``` |
| 79 | + |
| 80 | + </TabItem> |
| 81 | + |
| 82 | + <TabItem value="Javascript" label="Javascript" default> |
| 83 | + <SolutionAuthor name="@Ishitamukherjee2004"/> |
| 84 | + |
| 85 | + ```javascript |
| 86 | + |
| 87 | +function nthRoot(n, m) { |
| 88 | + return Math.pow(m, 1/n); |
| 89 | +} |
| 90 | + |
| 91 | + |
| 92 | + |
| 93 | + ``` |
| 94 | + |
| 95 | + </TabItem> |
| 96 | + |
| 97 | + <TabItem value="Typescript" label="Typescript" default> |
| 98 | + <SolutionAuthor name="@Ishitamukherjee2004"/> |
| 99 | + |
| 100 | + ```typescript |
| 101 | +function nthRoot(n: number, m: number): number { |
| 102 | + return Math.pow(m, 1/n); |
| 103 | +} |
| 104 | + |
| 105 | + |
| 106 | + ``` |
| 107 | + |
| 108 | + </TabItem> |
| 109 | + |
| 110 | + <TabItem value="Java" label="Java" default> |
| 111 | + <SolutionAuthor name="@Ishitamukherjee2004"/> |
| 112 | + |
| 113 | + ```java |
| 114 | +public class Main { |
| 115 | + public static void main(String[] args) { |
| 116 | + int n = 3; |
| 117 | + int m = 27; |
| 118 | + double result = Math.pow(m, 1.0 / n); |
| 119 | + System.out.println(result); |
| 120 | + } |
| 121 | +} |
| 122 | + |
| 123 | + |
| 124 | + ``` |
| 125 | + |
| 126 | + </TabItem> |
| 127 | +</Tabs> |
| 128 | + |
| 129 | + |
| 130 | +## Time Complexity |
| 131 | + |
| 132 | +* The iterative approach has a time complexity of $O(1)$. |
| 133 | + |
| 134 | +## Space Complexity |
| 135 | + |
| 136 | +* The space complexity is $O(1)$ since we are using only a fixed amount of extra space. |
0 commit comments