|
| 1 | +--- |
| 2 | +id: find-the-closest-palindrome |
| 3 | +title: Find the Closest Palindrome |
| 4 | +sidebar_label: 564 Find the Closest Palindrome |
| 5 | +tags: |
| 6 | +- Java |
| 7 | +- string |
| 8 | +- Math |
| 9 | +description: "This document provides a solution where we need to find the nearest palindrome to a given number n, the idea is to generate potential palindromic candidates close to n and then determine which one is closest in terms of absolute difference. " |
| 10 | +--- |
| 11 | + |
| 12 | +## Problem |
| 13 | + |
| 14 | +Given a string $n$ representing an integer, return the closest integer (not including itself), which is a palindrome. If there is a tie, return **the smaller one**. |
| 15 | + |
| 16 | +The closest is defined as the absolute difference minimized between two integers. |
| 17 | + |
| 18 | +### Examples |
| 19 | + |
| 20 | +**Example 1:** |
| 21 | + |
| 22 | +``` |
| 23 | +Input: n = "123" |
| 24 | +
|
| 25 | +Output: "121" |
| 26 | +
|
| 27 | +``` |
| 28 | + |
| 29 | +**Example 2:** |
| 30 | + |
| 31 | +``` |
| 32 | +Input: n = "1" |
| 33 | +
|
| 34 | +Output: "0" |
| 35 | +
|
| 36 | +Explanation: 0 and 2 are the closest palindromes but we return the smallest which is 0. |
| 37 | +
|
| 38 | +``` |
| 39 | + |
| 40 | +### Constraints |
| 41 | + |
| 42 | +- $1 \leq n.length \leq 18$ |
| 43 | +- $n$ consists of only digits. |
| 44 | +- $n$ does not have leading zeros. |
| 45 | +- $n$ is representing an integer in the range [1, $10^18$ - 1]. |
| 46 | + |
| 47 | +--- |
| 48 | + |
| 49 | +## Approach |
| 50 | + |
| 51 | +To solve the problem, we need to understand the nature of the allowed moves: |
| 52 | + |
| 53 | +1. **Generate Candidate Palindromes**: |
| 54 | + |
| 55 | + - Generate palindromes by reflecting the first half of the number. |
| 56 | + |
| 57 | + - Create palindromes by incrementing or decrementing the first half of the number. |
| 58 | + |
| 59 | + - Consider edge cases such as numbers with all $9's$ or all $0's$. |
| 60 | + |
| 61 | +2. **Calculate Distances**: |
| 62 | + |
| 63 | + - For each candidate palindrome, compute the absolute difference from the original number $n$. |
| 64 | + |
| 65 | +3. **Select the Closest Palindrome**: |
| 66 | + |
| 67 | + - Among all candidates, select the one with the smallest absolute difference. In case of ties, choose the smaller number. |
| 68 | + |
| 69 | +## Solution for Finding the Closest Palindrome |
| 70 | + |
| 71 | +The given problem involves To find the nearest palindrome to a given number 'n', the idea is to generate potential palindromic candidates close to 'n' and then determine which one is closest in terms of absolute difference. |
| 72 | + |
| 73 | +#### Code in Java |
| 74 | + |
| 75 | +```java |
| 76 | +class Solution { |
| 77 | + public String nearestPalindromic(String n) { |
| 78 | + long num = Long.parseLong(n); |
| 79 | + int len = n.length(); |
| 80 | + |
| 81 | + // Edge cases for 1, 0, 10, 100, etc. |
| 82 | + long smaller = (long) Math.pow(10, len - 1) - 1; |
| 83 | + long larger = (long) Math.pow(10, len) + 1; |
| 84 | + |
| 85 | + // Middle palindrome by modifying the first half |
| 86 | + long prefix = Long.parseLong(n.substring(0, (len + 1) / 2)); |
| 87 | + long candidate1 = createPalindrome(prefix, len % 2 == 0); |
| 88 | + long candidate2 = createPalindrome(prefix - 1, len % 2 == 0); |
| 89 | + long candidate3 = createPalindrome(prefix + 1, len % 2 == 0); |
| 90 | + |
| 91 | + // Collecting all candidates |
| 92 | + long[] candidates = {smaller, larger, candidate1, candidate2, candidate3}; |
| 93 | + |
| 94 | + // Finding the nearest palindrome |
| 95 | + long nearest = -1; |
| 96 | + for (long candidate : candidates) { |
| 97 | + if (candidate != num) { |
| 98 | + if (nearest == -1 || Math.abs(candidate - num) < Math.abs(nearest - num) || |
| 99 | + (Math.abs(candidate - num) == Math.abs(nearest - num) && candidate < nearest)) { |
| 100 | + nearest = candidate; |
| 101 | + } |
| 102 | + } |
| 103 | + } |
| 104 | + |
| 105 | + return String.valueOf(nearest); |
| 106 | + } |
| 107 | + |
| 108 | + private long createPalindrome(long prefix, boolean isEvenLength) { |
| 109 | + String strPrefix = String.valueOf(prefix); |
| 110 | + StringBuilder sb = new StringBuilder(strPrefix); |
| 111 | + if (!isEvenLength) { |
| 112 | + sb.setLength(sb.length() - 1); |
| 113 | + } |
| 114 | + return Long.parseLong(strPrefix + sb.reverse().toString()); |
| 115 | + } |
| 116 | +} |
| 117 | + |
| 118 | +``` |
| 119 | + |
| 120 | +### Complexity Analysis |
| 121 | + |
| 122 | +#### Time Complexity: $O(log(n))$ |
| 123 | + |
| 124 | +> **Reason**: Time Complexity is $O(log(n))$, Comparing a constant number of candidates (5 in this case) involves checking their absolute differences with the original number. |
| 125 | +
|
| 126 | +#### Space Complexity: $O(1)$ |
| 127 | + |
| 128 | +> **Reason**: $O(1)$ additional space, excluding the space required to store the input and output since we only use a fixed number of variables. |
| 129 | +
|
| 130 | +# References |
| 131 | + |
| 132 | +- **LeetCode Problem:** [Find the Closest Palindrome](https://leetcode.com/problems/find-the-closest-palindrome/description/) |
| 133 | +- **Solution Link:** [Find the Closest Palindrome Solution on LeetCode](https://leetcode.com/problems/find-the-closest-palindrome/solutions/) |
| 134 | +- **Authors LeetCode Profile:** [Vivek Vardhan](https://leetcode.com/u/vivekvardhan43862/) |
0 commit comments