Skip to content

Commit d262167

Browse files
authored
Merge pull request #2078 from Aditi22Bansal/main
Solved issue #2077- Interpolation-Search.md
2 parents 48b6c55 + 75e1025 commit d262167

File tree

1 file changed

+223
-0
lines changed

1 file changed

+223
-0
lines changed
Lines changed: 223 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,223 @@
1+
---
2+
id: Interpolation-Search
3+
title: Interpolation Search (Geeks for Geeks)
4+
sidebar_label: Interpolation Search
5+
tags:
6+
- Intermediate
7+
- Search Algorithms
8+
- Geeks for Geeks
9+
- CPP
10+
- Python
11+
- Java
12+
- JavaScript
13+
- DSA
14+
description: "This is a solution to the Interpolation Search problem."
15+
---
16+
17+
## What is Interpolation Search?
18+
19+
Interpolation Search is an efficient search algorithm for uniformly distributed sorted arrays. It works by estimating the position of the target value based on the value's distribution, making it faster than linear search and in some cases more efficient than binary search.
20+
21+
## Algorithm for Interpolation Search
22+
23+
1. Initialize the low and high indices to 0 and N-1, respectively.
24+
2. While the target value is within the range defined by the current low and high indices:
25+
- Calculate the probe position using the formula:
26+
$$
27+
\text{pos} = \text{low} + \left( \frac{(x - \text{arr}[low]) \times (\text{high} - \text{low})}{\text{arr}[high] - \text{arr}[low]} \right)
28+
$$
29+
3. Check the value at the probe position:
30+
- If `arr[pos]` is equal to the target value, return `pos`.
31+
- If `arr[pos]` is less than the target value, update `low` to `pos + 1`.
32+
- If `arr[pos]` is greater than the target value, update `high` to `pos - 1`.
33+
4. If the target value is not found, return -1.
34+
35+
## How does Interpolation Search work?
36+
37+
- It calculates a probe position using a formula that considers the distribution of values within the array.
38+
- The probe position is used to narrow down the search range, making the search process more efficient compared to a linear search.
39+
40+
## Problem Description
41+
42+
Given a sorted list and a target element, implement the Interpolation Search algorithm to find the index of the target element in the list. If the element is not present, return -1.
43+
44+
## Examples
45+
46+
**Example 1:**
47+
Input:
48+
list = [10, 12, 13, 16, 18, 19, 20, 21, 22, 23]
49+
target = 18
50+
Output: 4
51+
52+
53+
**Example 2:**
54+
Input:
55+
list = [10, 12, 13, 16, 18, 19, 20, 21, 22, 23]
56+
target = 25
57+
Output: -1
58+
59+
60+
## Your Task:
61+
62+
You don't need to read input or print anything. Complete the function interpolation_search() which takes arr[], N and K as input parameters and returns the index of K in the array. If K is not present in the array, return -1.
63+
64+
Expected Time Complexity: $O(\log \log N)$
65+
Expected Auxiliary Space: $O(1)$
66+
67+
## Constraints
68+
69+
- $1 <= N <= 10^5$
70+
- $1 <= arr[i] <= 10^6$
71+
- $1 <= K <= 10^6$
72+
73+
## Implementation
74+
75+
<Tabs>
76+
<TabItem value="Python" label="Python" default>
77+
78+
```python
79+
80+
def interpolation_search(arr, n, x):
81+
low = 0
82+
high = n - 1
83+
84+
while low <= high and x >= arr[low] and x <= arr[high]:
85+
if low == high:
86+
if arr[low] == x:
87+
return low
88+
return -1
89+
90+
pos = low + ((x - arr[low]) * (high - low) // (arr[high] - arr[low]))
91+
92+
if arr[pos] == x:
93+
return pos
94+
if arr[pos] < x:
95+
low = pos + 1
96+
else:
97+
high = pos - 1
98+
return -1
99+
```
100+
</TabItem>
101+
<TabItem value="C++" label="C++">
102+
103+
```cpp
104+
105+
#include <iostream>
106+
#include <vector>
107+
108+
int interpolation_search(const std::vector<int>& arr, int n, int x) {
109+
int low = 0, high = n - 1;
110+
111+
while (low <= high && x >= arr[low] && x <= arr[high]) {
112+
if (low == high) {
113+
if (arr[low] == x) return low;
114+
return -1;
115+
}
116+
117+
int pos = low + ((x - arr[low]) * (high - low) / (arr[high] - arr[low]));
118+
119+
if (arr[pos] == x)
120+
return pos;
121+
if (arr[pos] < x)
122+
low = pos + 1;
123+
else
124+
high = pos - 1;
125+
}
126+
return -1;
127+
}
128+
129+
int main() {
130+
std::vector<int> arr = {10, 12, 13, 16, 18, 19, 20, 21, 22, 23};
131+
int target = 18;
132+
std::cout << "Index: " << interpolation_search(arr, arr.size(), target) << std::endl;
133+
return 0;
134+
}
135+
```
136+
137+
</TabItem>
138+
<TabItem value="Java" label="Java">
139+
140+
```java
141+
142+
public class InterpolationSearch {
143+
public static int interpolationSearch(int[] arr, int n, int x) {
144+
int low = 0, high = n - 1;
145+
146+
while (low <= high && x >= arr[low] && x <= arr[high]) {
147+
if (low == high) {
148+
if (arr[low] == x) return low;
149+
return -1;
150+
}
151+
152+
int pos = low + ((x - arr[low]) * (high - low) / (arr[high] - arr[low]));
153+
154+
if (arr[pos] == x)
155+
return pos;
156+
if (arr[pos] < x)
157+
low = pos + 1;
158+
else
159+
high = pos - 1;
160+
}
161+
return -1;
162+
}
163+
164+
public static void main(String[] args) {
165+
int[] arr = {10, 12, 13, 16, 18, 19, 20, 21, 22, 23};
166+
int target = 18;
167+
System.out.println("Index: " + interpolationSearch(arr, arr.length, target));
168+
}
169+
}
170+
```
171+
172+
</TabItem>
173+
<TabItem value="JavaScript" label="JavaScript">
174+
175+
```javascript
176+
177+
function interpolationSearch(arr, n, x) {
178+
let low = 0, high = n - 1;
179+
180+
while (low <= high && x >= arr[low] && x <= arr[high]) {
181+
if (low === high) {
182+
if (arr[low] === x) return low;
183+
return -1;
184+
}
185+
186+
let pos = low + Math.floor(((x - arr[low]) * (high - low) / (arr[high] - arr[low])));
187+
188+
if (arr[pos] === x)
189+
return pos;
190+
if (arr[pos] < x)
191+
low = pos + 1;
192+
else
193+
high = pos - 1;
194+
}
195+
return -1;
196+
}
197+
198+
const arr = [10, 12, 13, 16, 18, 19, 20, 21, 22, 23];
199+
const target = 18;
200+
console.log("Index:", interpolationSearch(arr, arr.length, target));
201+
```
202+
203+
</TabItem>
204+
</Tabs>
205+
206+
# Complexity Analysis
207+
## Time Complexity:
208+
$O(\log \log n)$ for uniformly distributed data, where $n$ is the number of elements in the list.
209+
## Space Complexity:
210+
$O(1)$, as no extra space is required apart from the input list.
211+
212+
# Advantages and Disadvantages
213+
## Advantages:
214+
215+
Faster than linear search and binary search for uniformly distributed sorted lists.
216+
217+
Efficient for large datasets.
218+
219+
## Disadvantages:
220+
221+
Requires the list to be sorted.
222+
223+
Performance degrades if the distribution of elements is not uniform.

0 commit comments

Comments
 (0)