|
| 1 | +--- |
| 2 | +id: Hash-Table-Search |
| 3 | +title: Hash Table Search (Geeks for Geeks) |
| 4 | +sidebar_label: Hash Table Search |
| 5 | +tags: |
| 6 | + - Beginner |
| 7 | + - Search Algorithms |
| 8 | + - Geeks for Geeks |
| 9 | + - CPP |
| 10 | + - Python |
| 11 | + - Java |
| 12 | + - JavaScript |
| 13 | + - DSA |
| 14 | +description: "This is a solution to the Hash Table Search problem on Geeks for Geeks." |
| 15 | +--- |
| 16 | + |
| 17 | +## What is Hash Table Search? |
| 18 | + |
| 19 | +Hash Table Search is a search operation performed on a hash table, a data structure that stores key-value pairs. It allows for efficient insertion, deletion, and search operations in average O(1) time complexity. |
| 20 | + |
| 21 | +## Algorithm for Hash Table Search |
| 22 | + |
| 23 | +1. Compute the hash code of the target key using the hash function. |
| 24 | +2.Use the hash code to find the index of the target key in the hash table. |
| 25 | +3. If the key is found at the computed index, return the associated value. |
| 26 | +4. If the key is not found at the computed index, return null. |
| 27 | + |
| 28 | +## How does Hash Table Search work? |
| 29 | + |
| 30 | +- It begins by computing the hash code of the target key. |
| 31 | +- The hash code is then used to determine the index in the hash table where the key-value pair should be stored or searched. |
| 32 | +- If the key exists at the computed index, the corresponding value is returned. |
| 33 | +- If the key does not exist at the computed index, the search returns null. |
| 34 | + |
| 35 | + |
| 36 | + |
| 37 | + |
| 38 | + |
| 39 | +## Problem Description |
| 40 | + |
| 41 | +Given a hash table and a target key, implement the Hash Table Search algorithm to find the value associated with the target key in the table. If the key is not present, return null. |
| 42 | + |
| 43 | +## Examples |
| 44 | + |
| 45 | +**Example 1:** |
| 46 | +``` |
| 47 | +Input: |
| 48 | +Hash Table: {1: 'one', 2: 'two', 3: 'three'} |
| 49 | +Target Key: 2 |
| 50 | +Output: 'two' |
| 51 | + |
| 52 | +``` |
| 53 | + |
| 54 | +**Example 2:** |
| 55 | +``` |
| 56 | +Input: |
| 57 | +Hash Table: {1: 'one', 2: 'two', 3: 'three'} |
| 58 | +Target Key: 4 |
| 59 | +Output: null |
| 60 | +``` |
| 61 | + |
| 62 | +## Your Task: |
| 63 | + |
| 64 | +You don't need to read input or print anything. Complete the function hashTableSearch() which takes a hash table and a target key as input parameters and returns the value associated with the target key. If the target key is not present, return null. |
| 65 | + |
| 66 | +Expected Time Complexity: $O(1)$ |
| 67 | +Expected Auxiliary Space: $O(1)$ |
| 68 | + |
| 69 | +## Constraints |
| 70 | + |
| 71 | +- $1 <= Number of key-value pairs <= 10^5$ |
| 72 | +- Keys are integers and unique. |
| 73 | +- Values are strings. |
| 74 | + |
| 75 | +## Implementation |
| 76 | + |
| 77 | +<Tabs> |
| 78 | + |
| 79 | + <TabItem value="Java label="Java"> |
| 80 | + <SolutionAuthor name="@ngmuraqrdd"/> |
| 81 | + ```java |
| 82 | + |
| 83 | + import java.util.HashMap; |
| 84 | + |
| 85 | +public class HashTableSearch { |
| 86 | + public static String hashTableSearch(HashMap<Integer, String> hashTable, int target) { |
| 87 | + return hashTable.getOrDefault(target, null); |
| 88 | + } |
| 89 | + |
| 90 | + public static void main(String[] args) { |
| 91 | + HashMap<Integer, String> hashTable = new HashMap<>(); |
| 92 | + hashTable.put(1, "one"); |
| 93 | + hashTable.put(2, "two"); |
| 94 | + hashTable.put(3, "three"); |
| 95 | + |
| 96 | + int target = 2; |
| 97 | + System.out.println(hashTableSearch(hashTable, target)); // Output: 'two' |
| 98 | + |
| 99 | + target = 4; |
| 100 | + System.out.println(hashTableSearch(hashTable, target)); // Output: null |
| 101 | + } |
| 102 | +} |
| 103 | + |
| 104 | + </TabItem> |
| 105 | + |
| 106 | + <TabItem value="C++" label="C++"> |
| 107 | + <SolutionAuthor name="@ngmuraqrdd"/> |
| 108 | + ```cpp |
| 109 | + #include <iostream> |
| 110 | +#include <unordered_map> |
| 111 | + |
| 112 | +std::string hashTableSearch(const std::unordered_map<int, std::string>& hashTable, int target) { |
| 113 | + auto it = hashTable.find(target); |
| 114 | + if (it != hashTable.end()) { |
| 115 | + return it->second; |
| 116 | + } |
| 117 | + return "null"; |
| 118 | +} |
| 119 | + |
| 120 | +int main() { |
| 121 | + std::unordered_map<int, std::string> hashTable = {{1, "one"}, {2, "two"}, {3, "three"}}; |
| 122 | + |
| 123 | + int target = 2; |
| 124 | + std::cout << hashTableSearch(hashTable, target) << std::endl; // Output: 'two' |
| 125 | + |
| 126 | + target = 4; |
| 127 | + std::cout << hashTableSearch(hashTable, target) << std::endl; // Output: null |
| 128 | + |
| 129 | + return 0; |
| 130 | +} |
| 131 | + |
| 132 | + |
| 133 | + </TabItem> |
| 134 | + ``` |
| 135 | + |
| 136 | +</Tabs> |
| 137 | + |
| 138 | +## Complexity Analysis |
| 139 | + |
| 140 | +- **Time Complexity**:$O(1)$, as hash table operations (insertion, deletion, and search) typically have constant time complexity. |
| 141 | + |
| 142 | +- **Space Complexity**:$O(1)$, as no extra space is required apart from the input hash table. |
| 143 | + |
| 144 | +## Advantages and Disadvantages |
| 145 | + |
| 146 | +**Advantages:** |
| 147 | +- Provides efficient search, insertion, and deletion operations. |
| 148 | +- Useful for applications requiring fast lookups and quick data retrieval. |
| 149 | + |
| 150 | +**Disadvantages:** |
| 151 | +- May require more memory compared to other data structures due to hashing and potential collisions. |
| 152 | +- Performance can degrade if the hash function leads to many collisions. |
| 153 | +References |
| 154 | + |
| 155 | +## References |
| 156 | + |
| 157 | +- **GFG Problem:** [GFG Problem](https://www.geeksforgeeks.org/hash-table-data-structure/) |
| 158 | +- **Author's Geeks for Geeks Profile:** [MuraliDharan](https://www.geeksforgeeks.org/user/ngmuraqrdd/) |
| 159 | + |
0 commit comments