|
| 1 | +--- |
| 2 | +id: contiguous-array |
| 3 | +title: Contiguous Array |
| 4 | +sidebar_label: 0525-Contiguous-Array |
| 5 | +tags: |
| 6 | +- Array |
| 7 | +- Hash Table |
| 8 | +description: "Given a binary array nums, return the maximum length of a contiguous subarray with an equal number of 0 and 1." |
| 9 | +--- |
| 10 | + |
| 11 | +## Problem |
| 12 | + |
| 13 | +Given a binary array `nums`, return the maximum length of a contiguous subarray with an equal number of `0` and `1`. |
| 14 | + |
| 15 | +### Examples |
| 16 | + |
| 17 | +**Example 1:** |
| 18 | + |
| 19 | +**Input:** `nums = [0,1]` |
| 20 | +**Output:** `2` |
| 21 | +**Explanation:** [0, 1] is the longest contiguous subarray with an equal number of 0 and 1. |
| 22 | + |
| 23 | +**Example 2:** |
| 24 | + |
| 25 | +**Input:** `nums = [0,1,0]` |
| 26 | +**Output:** `2` |
| 27 | +**Explanation:** [0, 1] (or [1, 0]) is the longest contiguous subarray with an equal number of 0 and 1. |
| 28 | + |
| 29 | +### Constraints |
| 30 | + |
| 31 | +- `1 <= nums.length <= 10^5` |
| 32 | +- `nums[i]` is either `0` or `1`. |
| 33 | + |
| 34 | +--- |
| 35 | + |
| 36 | +## Approach |
| 37 | + |
| 38 | +To solve this problem, we can use a hash map to keep track of the cumulative sum of the transformed array where `0` is replaced by `-1` and `1` is kept as `1`. The idea is to find the subarray with a cumulative sum of zero. |
| 39 | + |
| 40 | +### Steps: |
| 41 | + |
| 42 | +1. Initialize a hash map to store the cumulative sum and its corresponding index. |
| 43 | +2. Initialize `cumulative_sum` to `0` and `max_length` to `0`. |
| 44 | +3. Traverse the array: |
| 45 | + - Replace `0` with `-1`. |
| 46 | + - Update the `cumulative_sum`. |
| 47 | + - If the `cumulative_sum` is `0`, update `max_length` to the current index + 1. |
| 48 | + - If the `cumulative_sum` has been seen before, calculate the subarray length and update `max_length` if it's larger than the current `max_length`. |
| 49 | + - If the `cumulative_sum` has not been seen before, store it in the hash map with the current index. |
| 50 | +4. Return `max_length`. |
| 51 | + |
| 52 | +### Solution |
| 53 | + |
| 54 | +#### Java |
| 55 | + |
| 56 | +```java |
| 57 | +import java.util.HashMap; |
| 58 | + |
| 59 | +class Solution { |
| 60 | + public int findMaxLength(int[] nums) { |
| 61 | + HashMap<Integer, Integer> map = new HashMap<>(); |
| 62 | + map.put(0, -1); |
| 63 | + int maxLength = 0, cumulativeSum = 0; |
| 64 | + |
| 65 | + for (int i = 0; i < nums.length; i++) { |
| 66 | + cumulativeSum += (nums[i] == 0) ? -1 : 1; |
| 67 | + if (map.containsKey(cumulativeSum)) { |
| 68 | + maxLength = Math.max(maxLength, i - map.get(cumulativeSum)); |
| 69 | + } else { |
| 70 | + map.put(cumulativeSum, i); |
| 71 | + } |
| 72 | + } |
| 73 | + |
| 74 | + return maxLength; |
| 75 | + } |
| 76 | +} |
| 77 | +``` |
| 78 | +#### C++ |
| 79 | + |
| 80 | +```cpp |
| 81 | +#include <vector> |
| 82 | +#include <unordered_map> |
| 83 | +using namespace std; |
| 84 | + |
| 85 | +class Solution { |
| 86 | +public: |
| 87 | + int findMaxLength(vector<int>& nums) { |
| 88 | + unordered_map<int, int> map; |
| 89 | + map[0] = -1; |
| 90 | + int maxLength = 0, cumulativeSum = 0; |
| 91 | + |
| 92 | + for (int i = 0; i < nums.size(); i++) { |
| 93 | + cumulativeSum += (nums[i] == 0) ? -1 : 1; |
| 94 | + if (map.find(cumulativeSum) != map.end()) { |
| 95 | + maxLength = max(maxLength, i - map[cumulativeSum]); |
| 96 | + } else { |
| 97 | + map[cumulativeSum] = i; |
| 98 | + } |
| 99 | + } |
| 100 | + |
| 101 | + return maxLength; |
| 102 | + } |
| 103 | +}; |
| 104 | +``` |
| 105 | +#### Python |
| 106 | + |
| 107 | +```python |
| 108 | +class Solution: |
| 109 | + def findMaxLength(self, nums: List[int]) -> int: |
| 110 | + count_map = {0: -1} |
| 111 | + max_length = 0 |
| 112 | + cumulative_sum = 0 |
| 113 | + |
| 114 | + for i, num in enumerate(nums): |
| 115 | + cumulative_sum += -1 if num == 0 else 1 |
| 116 | + if cumulative_sum in count_map: |
| 117 | + max_length = max(max_length, i - count_map[cumulative_sum]) |
| 118 | + else: |
| 119 | + count_map[cumulative_sum] = i |
| 120 | + |
| 121 | + return max_length |
| 122 | +``` |
| 123 | +### Complexity Analysis |
| 124 | +**Time Complexity:** O(n) |
| 125 | +>Reason: We traverse the array once, and each lookup or insertion operation in the hash map is O(1) on average. |
| 126 | +
|
| 127 | +**Space Complexity:** O(n) |
| 128 | +>Reason: In the worst case, we may store up to n entries in the hash map. |
| 129 | +
|
| 130 | +### References |
| 131 | +**LeetCode Problem:** Contiguous Array |
0 commit comments