|
| 1 | +-- |
| 2 | +id: Tree-Sort |
| 3 | +title: Tree Sort (Geeks for Geeks) |
| 4 | +sidebar_label: Tree Sort |
| 5 | +tags: |
| 6 | + - Intermediate |
| 7 | + - Sorting Algorithms |
| 8 | + - Geeks for Geeks |
| 9 | + - CPP |
| 10 | + - Python |
| 11 | + - Java |
| 12 | + - JavaScript |
| 13 | + - DSA |
| 14 | +description: "This is a solution to the Tree Sort problem on Geeks for Geeks." |
| 15 | +--- |
| 16 | + |
| 17 | +## 1. What is Tree Sort? |
| 18 | + |
| 19 | +Tree Sort is a sorting algorithm that uses a Binary Search Tree (BST) to sort elements. The elements are inserted into a BST and then an in-order traversal is performed to retrieve them in sorted order. |
| 20 | + |
| 21 | +## 2. Algorithm for Tree Sort |
| 22 | + |
| 23 | +1. Create an empty Binary Search Tree (BST). |
| 24 | +2. Insert all elements from the array into the BST. |
| 25 | +3. Perform an in-order traversal of the BST to retrieve the elements in sorted order. |
| 26 | + |
| 27 | +## 3. How does Tree Sort work? |
| 28 | + |
| 29 | +- Each element from the array is inserted into a BST. |
| 30 | +- During the in-order traversal of the BST, elements are retrieved in ascending order because the left subtree is visited first, followed by the root, and then the right subtree. |
| 31 | + |
| 32 | +## 4. Problem Description |
| 33 | + |
| 34 | +Given an array of integers, implement the Tree Sort algorithm to sort the array. |
| 35 | + |
| 36 | +## 5. Examples |
| 37 | + |
| 38 | +**Example 1:** |
| 39 | + |
| 40 | +``` |
| 41 | +Input: [10, 7, 8, 9, 1, 5] |
| 42 | +Output: [1, 5, 7, 8, 9, 10] |
| 43 | +``` |
| 44 | + |
| 45 | +**Example 2:** |
| 46 | +``` |
| 47 | +Input: [38, 27, 43, 3, 9, 82, 10] |
| 48 | +Output: [3, 9, 10, 27, 38, 43, 82] |
| 49 | +
|
| 50 | +``` |
| 51 | + |
| 52 | +## 6. Constraints |
| 53 | + |
| 54 | +- The array should contain at least one element. |
| 55 | + |
| 56 | +## 7. Implementation |
| 57 | + |
| 58 | +**Python** |
| 59 | +```python |
| 60 | +class TreeNode: |
| 61 | + def __init__(self, key): |
| 62 | + self.left = None |
| 63 | + self.right = None |
| 64 | + self.val = key |
| 65 | + |
| 66 | +def insert(root, key): |
| 67 | + if root is None: |
| 68 | + return TreeNode(key) |
| 69 | + else: |
| 70 | + if key < root.val: |
| 71 | + root.left = insert(root.left, key) |
| 72 | + else: |
| 73 | + root.right = insert(root.right, key) |
| 74 | + return root |
| 75 | + |
| 76 | +def inorder_traversal(root, res): |
| 77 | + if root: |
| 78 | + inorder_traversal(root.left, res) |
| 79 | + res.append(root.val) |
| 80 | + inorder_traversal(root.right, res) |
| 81 | + |
| 82 | +def tree_sort(arr): |
| 83 | + if not arr: |
| 84 | + return [] |
| 85 | + root = TreeNode(arr[0]) |
| 86 | + for key in arr[1:]: |
| 87 | + insert(root, key) |
| 88 | + sorted_array = [] |
| 89 | + inorder_traversal(root, sorted_array) |
| 90 | + return sorted_array |
| 91 | + |
| 92 | +``` |
| 93 | +```java |
| 94 | +import java.util.*; |
| 95 | + |
| 96 | +class TreeNode { |
| 97 | + int val; |
| 98 | + TreeNode left, right; |
| 99 | + TreeNode(int item) { |
| 100 | + val = item; |
| 101 | + left = right = null; |
| 102 | + } |
| 103 | +} |
| 104 | + |
| 105 | +public class TreeSort { |
| 106 | + TreeNode root; |
| 107 | + |
| 108 | + void insert(int key) { |
| 109 | + root = insertRec(root, key); |
| 110 | + } |
| 111 | + |
| 112 | + TreeNode insertRec(TreeNode root, int key) { |
| 113 | + if (root == null) { |
| 114 | + root = new TreeNode(key); |
| 115 | + return root; |
| 116 | + } |
| 117 | + if (key < root.val) { |
| 118 | + root.left = insertRec(root.left, key); |
| 119 | + } else if (key > root.val) { |
| 120 | + root.right = insertRec(root.right, key); |
| 121 | + } |
| 122 | + return root; |
| 123 | + } |
| 124 | + |
| 125 | + void inorderRec(TreeNode root, List<Integer> res) { |
| 126 | + if (root != null) { |
| 127 | + inorderRec(root.left, res); |
| 128 | + res.add(root.val); |
| 129 | + inorderRec(root.right, res); |
| 130 | + } |
| 131 | + } |
| 132 | + |
| 133 | + public static List<Integer> treeSort(int[] arr) { |
| 134 | + TreeSort tree = new TreeSort(); |
| 135 | + for (int num : arr) { |
| 136 | + tree.insert(num); |
| 137 | + } |
| 138 | + List<Integer> sortedArray = new ArrayList<>(); |
| 139 | + tree.inorderRec(tree.root, sortedArray); |
| 140 | + return sortedArray; |
| 141 | + } |
| 142 | + |
| 143 | + public static void main(String[] args) { |
| 144 | + int[] arr = {5, 1, 4, 2, 8, 0, 2}; |
| 145 | + List<Integer> sortedArr = treeSort(arr); |
| 146 | + for (int num : sortedArr) { |
| 147 | + System.out.print(num + " "); |
| 148 | + } |
| 149 | + } |
| 150 | +} |
| 151 | + |
| 152 | +``` |
| 153 | + |
| 154 | +## 8. Complexity Analysis |
| 155 | + |
| 156 | +- **Time Complexity**: |
| 157 | + -Best case: $O(n \log n)$ (balanced BST) |
| 158 | +Average case: $O(n \log n)$ (balanced BST) |
| 159 | +Worst case: $O(n^2)$ (unbalanced BST) |
| 160 | + |
| 161 | +- **Space Complexity**: $O(n)$ (for the BST and recursion stack) |
| 162 | + |
| 163 | +## 9. Advantages and Disadvantages |
| 164 | + |
| 165 | +**Advantages:** |
| 166 | +- Can achieve $O(n \log n)$ time complexity if the BST remains balanced. |
| 167 | +- Simple to understand and implement. |
| 168 | + |
| 169 | +**Disadvantages:** |
| 170 | +- In the worst case (unbalanced BST), the time complexity degrades to $O(n^2)$. |
| 171 | +- Requires additional memory for the tree structure, which is $O(n)$. |
| 172 | +- The bidirectional approach does not significantly improve performance for most input cases. |
| 173 | + |
| 174 | +## 10. References |
| 175 | + |
| 176 | +- **GFG Article on Tree Sort:** [Geeks for Geeks Counting Sort](https://www.geeksforgeeks.org/cartesian-tree-sorting/) |
| 177 | +- **Wikipedia Article on Tree Sort:** [Counting Sort - Wikipedia](https://en.wikipedia.org/wiki/Tree_sort) |
0 commit comments