|
| 1 | +--- |
| 2 | +id: pancake-sorting |
| 3 | +title: Pancake Sorting |
| 4 | +sidebar_label: 969-Pancake Sorting |
| 5 | +tags: |
| 6 | + - Sorting |
| 7 | + - Array |
| 8 | + - LeetCode |
| 9 | + - Java |
| 10 | + - Python |
| 11 | + - C++ |
| 12 | +description: "This is a solution to the Pancake Sorting problem on LeetCode." |
| 13 | +sidebar_position: 13 |
| 14 | +--- |
| 15 | + |
| 16 | +## Problem Description |
| 17 | + |
| 18 | +Given an array of integers `arr`, sort the array by performing a series of pancake flips. |
| 19 | + |
| 20 | +In one pancake flip, we do the following steps: |
| 21 | +1. Choose an integer `k` where `1 <= k <= arr.length`. |
| 22 | +2. Reverse the sub-array `arr[0...k-1]` (0-indexed). |
| 23 | + |
| 24 | +For example, if `arr = [3,2,1,4]` and we performed a pancake flip choosing `k = 3`, we reverse the sub-array `[3,2,1]`, so `arr = [1,2,3,4]` after the pancake flip at `k = 3`. |
| 25 | + |
| 26 | +Return an array of the `k`-values corresponding to a sequence of pancake flips that sort `arr`. Any valid answer that sorts the array within `10 * arr.length` flips will be judged as correct. |
| 27 | + |
| 28 | +### Examples |
| 29 | + |
| 30 | +**Example 1:** |
| 31 | + |
| 32 | +``` |
| 33 | +Input: arr = [3,2,4,1] |
| 34 | +Output: [4,2,4,3] |
| 35 | +Explanation: |
| 36 | +We perform 4 pancake flips, with k values 4, 2, 4, and 3. |
| 37 | +Starting state: arr = [3, 2, 4, 1] |
| 38 | +After 1st flip (k = 4): arr = [1, 4, 2, 3] |
| 39 | +After 2nd flip (k = 2): arr = [4, 1, 2, 3] |
| 40 | +After 3rd flip (k = 4): arr = [3, 2, 1, 4] |
| 41 | +After 4th flip (k = 3): arr = [1, 2, 3, 4], which is sorted. |
| 42 | +``` |
| 43 | + |
| 44 | +**Example 2:** |
| 45 | + |
| 46 | +``` |
| 47 | +Input: arr = [1,2,3] |
| 48 | +Output: [] |
| 49 | +Explanation: The input is already sorted, so there is no need to flip anything. |
| 50 | +Note that other answers, such as [3, 3], would also be accepted. |
| 51 | +``` |
| 52 | + |
| 53 | +### Constraints |
| 54 | + |
| 55 | +- `1 <= arr.length <= 100` |
| 56 | +- `1 <= arr[i] <= arr.length` |
| 57 | +- All integers in `arr` are unique (i.e., `arr` is a permutation of the integers from 1 to `arr.length`). |
| 58 | + |
| 59 | +--- |
| 60 | + |
| 61 | +## Solution for Pancake Sorting Problem |
| 62 | + |
| 63 | +To solve this problem, we perform a series of pancake flips to sort the array in ascending order. A pancake flip reverses the sub-array from the start to a chosen index `k`. The goal is to bring the largest unsorted element to its correct position iteratively. |
| 64 | + |
| 65 | +### Approach |
| 66 | + |
| 67 | +1. **Identify Largest Element:** Find the largest unsorted element in the array. |
| 68 | +2. **Bring to Front:** If this largest element is not already at the front, flip it to bring it to the front. |
| 69 | +3. **Move to Correct Position:** Flip the entire sub-array up to the correct position of the largest element to place it at its sorted position. |
| 70 | +4. **Repeat:** Repeat the above steps for the next largest unsorted elements, excluding the already sorted part of the array. |
| 71 | + |
| 72 | +### Code in Different Languages |
| 73 | + |
| 74 | +<Tabs> |
| 75 | +<TabItem value="C++" label="C++" default> |
| 76 | +<SolutionAuthor name="@ImmidiSivani"/> |
| 77 | + |
| 78 | +```cpp |
| 79 | +class Solution { |
| 80 | +public: |
| 81 | + vector<int> pancakeSort(vector<int>& arr) { |
| 82 | + vector<int> res; |
| 83 | + int n = arr.size(); |
| 84 | + for (int i = n; i > 1; --i) { |
| 85 | + int maxIdx = max_element(arr.begin(), arr.begin() + i) - arr.begin(); |
| 86 | + if (maxIdx == i - 1) continue; |
| 87 | + if (maxIdx != 0) { |
| 88 | + res.push_back(maxIdx + 1); |
| 89 | + reverse(arr.begin(), arr.begin() + maxIdx + 1); |
| 90 | + } |
| 91 | + res.push_back(i); |
| 92 | + reverse(arr.begin(), arr.begin() + i); |
| 93 | + } |
| 94 | + return res; |
| 95 | + } |
| 96 | +}; |
| 97 | +``` |
| 98 | +
|
| 99 | +</TabItem> |
| 100 | +<TabItem value="Java" label="Java"> |
| 101 | +<SolutionAuthor name="@ImmidiSivani"/> |
| 102 | +
|
| 103 | +```java |
| 104 | +class Solution { |
| 105 | + public List<Integer> pancakeSort(int[] arr) { |
| 106 | + List<Integer> res = new ArrayList<>(); |
| 107 | + int n = arr.length; |
| 108 | + for (int i = n; i > 1; --i) { |
| 109 | + int maxIdx = findMaxIndex(arr, i); |
| 110 | + if (maxIdx == i - 1) continue; |
| 111 | + if (maxIdx != 0) { |
| 112 | + res.add(maxIdx + 1); |
| 113 | + flip(arr, maxIdx + 1); |
| 114 | + } |
| 115 | + res.add(i); |
| 116 | + flip(arr, i); |
| 117 | + } |
| 118 | + return res; |
| 119 | + } |
| 120 | +
|
| 121 | + private int findMaxIndex(int[] arr, int k) { |
| 122 | + int maxIdx = 0; |
| 123 | + for (int i = 1; i < k; i++) { |
| 124 | + if (arr[i] > arr[maxIdx]) { |
| 125 | + maxIdx = i; |
| 126 | + } |
| 127 | + } |
| 128 | + return maxIdx; |
| 129 | + } |
| 130 | +
|
| 131 | + private void flip(int[] arr, int k) { |
| 132 | + for (int i = 0, j = k - 1; i < j; i++, j--) { |
| 133 | + int temp = arr[i]; |
| 134 | + arr[i] = arr[j]; |
| 135 | + arr[j] = temp; |
| 136 | + } |
| 137 | + } |
| 138 | +} |
| 139 | +``` |
| 140 | + |
| 141 | +</TabItem> |
| 142 | +<TabItem value="Python" label="Python"> |
| 143 | +<SolutionAuthor name="@ImmidiSivani"/> |
| 144 | + |
| 145 | +```python |
| 146 | +class Solution: |
| 147 | + def pancakeSort(self, arr: List[int]) -> List[int]: |
| 148 | + res = [] |
| 149 | + n = len(arr) |
| 150 | + for i in range(n, 1, -1): |
| 151 | + max_idx = arr.index(max(arr[:i])) |
| 152 | + if max_idx == i - 1: |
| 153 | + continue |
| 154 | + if max_idx != 0: |
| 155 | + res.append(max_idx + 1) |
| 156 | + arr[:max_idx + 1] = arr[:max_idx + 1][::-1] |
| 157 | + res.append(i) |
| 158 | + arr[:i] = arr[:i][::-1] |
| 159 | + return res |
| 160 | +``` |
| 161 | + |
| 162 | +</TabItem> |
| 163 | +</Tabs> |
| 164 | + |
| 165 | +#### Complexity Analysis |
| 166 | + |
| 167 | +- **Time Complexity**: $O(n^2)$, where `n` is the length of the array. Finding the maximum and flipping can each take up to `O(n)`, and we do this for each of the `n` elements. |
| 168 | +- **Space Complexity**: $O(1)$, excluding the output list. |
| 169 | + |
| 170 | +--- |
| 171 | + |
| 172 | +<h2>Authors:</h2> |
| 173 | + |
| 174 | +<div style={{display: 'flex', flexWrap: 'wrap', justifyContent: 'space-between', gap: '10px'}}> |
| 175 | +{['ImmidiSivani'].map(username => ( |
| 176 | + <Author key={username} username={username} /> |
| 177 | +))} |
| 178 | +</div> |
0 commit comments