|
| 1 | +--- |
| 2 | +id: fibonacci-sum |
| 3 | +title: Fibonacci Sum (Geeks for Geeks) |
| 4 | +sidebar_label: 0004 - Fibonacci Sum |
| 5 | +tags: |
| 6 | + - intermediate |
| 7 | + - Fibonacci |
| 8 | + - Dynamic Programming |
| 9 | + - Mathematics |
| 10 | + - Algorithms |
| 11 | +--- |
| 12 | + |
| 13 | +This tutorial contains a complete walk-through of the Fibonacci Sum problem from the Geeks for Geeks website. It features the implementation of the solution code in three programming languages: Python, C++, and Java. |
| 14 | + |
| 15 | +## Problem Description |
| 16 | + |
| 17 | +Given a positive number N, find the value of f0 + f1 + f2 + ... + fN where fi indicates the ith Fibonacci number. Note that f0 = 0, f1 = 1, f2 = 1, f3 = 2, f4 = 3, f5 = 5, and so on. Since the answer can be very large, return the result modulo 1000000007. |
| 18 | + |
| 19 | +## Examples |
| 20 | + |
| 21 | +``` |
| 22 | +**Example 1:** |
| 23 | +
|
| 24 | +Input: |
| 25 | +N = 3 |
| 26 | +Output: |
| 27 | +4 |
| 28 | +Explanation: |
| 29 | +0 + 1 + 1 + 2 = 4 |
| 30 | +``` |
| 31 | + |
| 32 | +``` |
| 33 | +**Example 2:** |
| 34 | +
|
| 35 | +
|
| 36 | +Input: |
| 37 | +N = 4 |
| 38 | +Output: |
| 39 | +7 |
| 40 | +Explanation: |
| 41 | +0 + 1 + 1 + 2 + 3 = 7 |
| 42 | +
|
| 43 | +``` |
| 44 | + |
| 45 | +## Your Task |
| 46 | + |
| 47 | +You don't need to read input or print anything. Your task is to complete the function `fibSum()` which takes an integer N as input parameter and returns the sum of all the Fibonacci numbers from f0 to fN. |
| 48 | + |
| 49 | +Expected Time Complexity: $O(LogN)$ |
| 50 | +Expected Auxiliary Space: $O(1)$ |
| 51 | + |
| 52 | +## Constraints |
| 53 | + |
| 54 | +1. $1 \leq N \leq 100000$ |
| 55 | + |
| 56 | +## Solution Approach |
| 57 | + |
| 58 | +### Brute Force Approach |
| 59 | + |
| 60 | +#### Intuition: |
| 61 | + |
| 62 | +We can compute the sum of Fibonacci numbers from f0 to fN using a simple iterative method by adding up all Fibonacci numbers up to N. |
| 63 | + |
| 64 | +#### Implementation: |
| 65 | + |
| 66 | +1. Initialize `sum` to 0. |
| 67 | +2. Use a loop to compute Fibonacci numbers up to N. |
| 68 | +3. Add each Fibonacci number to `sum`. |
| 69 | +4. Return the sum modulo 1000000007. |
| 70 | + |
| 71 | +#### Code (C++): |
| 72 | + |
| 73 | +```cpp |
| 74 | +#include <iostream> |
| 75 | +#define MOD 1000000007 |
| 76 | +using namespace std; |
| 77 | + |
| 78 | +class Solution { |
| 79 | +public: |
| 80 | + int fibSum(int N) { |
| 81 | + if (N == 0) return 0; |
| 82 | + long long f0 = 0, f1 = 1, sum = 1; |
| 83 | + for (int i = 2; i <= N; ++i) { |
| 84 | + long long f2 = (f0 + f1) % MOD; |
| 85 | + sum = (sum + f2) % MOD; |
| 86 | + f0 = f1; |
| 87 | + f1 = f2; |
| 88 | + } |
| 89 | + return sum; |
| 90 | + } |
| 91 | +}; |
| 92 | +``` |
| 93 | +
|
| 94 | +### Complexity |
| 95 | +
|
| 96 | +- Time Complexity: $O(N)$, as we are iterating from 0 to N. |
| 97 | +- Space Complexity: $O(1)$, as we are using a constant amount of extra space. |
| 98 | +
|
| 99 | +## Matrix Exponentiation Approach |
| 100 | +
|
| 101 | +#### Intuition: |
| 102 | +
|
| 103 | +To efficiently find the sum of the first N Fibonacci numbers, we use matrix exponentiation. By utilizing the transformation matrix and its properties, we can compute the required sum in logarithmic time. |
| 104 | +
|
| 105 | +#### Implementation: |
| 106 | +
|
| 107 | +1. Define a function to multiply two matrices. |
| 108 | +2. Define a function to compute the power of a matrix. |
| 109 | +3. Use the power function to compute the matrix exponentiation result. |
| 110 | +4. Extract the result from the matrix to get the sum of the first N Fibonacci numbers. |
| 111 | +
|
| 112 | +#### Code (C++): |
| 113 | +
|
| 114 | +```cpp |
| 115 | +#include <vector> |
| 116 | +using namespace std; |
| 117 | +
|
| 118 | +class Solution { |
| 119 | +public: |
| 120 | + const int mod = 1e9 + 7; |
| 121 | +
|
| 122 | + vector<vector<long long int>> multiply(vector<vector<long long int>>& a, vector<vector<long long int>>& b) { |
| 123 | + long long int n = a.size(); |
| 124 | + vector<vector<long long int>> ans(n, vector<long long int>(n, 0)); |
| 125 | + for (int i = 0; i < n; i++) { |
| 126 | + for (int j = 0; j < n; j++) { |
| 127 | + for (int k = 0; k < n; k++) { |
| 128 | + ans[i][j] = (ans[i][j] + (a[i][k] * b[k][j]) % mod) % mod; |
| 129 | + } |
| 130 | + } |
| 131 | + } |
| 132 | + return ans; |
| 133 | + } |
| 134 | +
|
| 135 | + vector<vector<long long int>> power(vector<vector<long long int>>& F, long long int n) { |
| 136 | + if (n == 0) { |
| 137 | + long long int s = F.size(); |
| 138 | + vector<vector<long long int>> ans(s, vector<long long int>(s, 0)); |
| 139 | + for (int i = 0; i < s; i++) { |
| 140 | + ans[i][i] = 1; |
| 141 | + } |
| 142 | + return ans; |
| 143 | + } |
| 144 | + if (n == 1) { |
| 145 | + return F; |
| 146 | + } |
| 147 | + vector<vector<long long int>> temp = power(F, n / 2); |
| 148 | + vector<vector<long long int>> ans = multiply(temp, temp); |
| 149 | + if (n % 2 != 0) { |
| 150 | + ans = multiply(ans, F); |
| 151 | + } |
| 152 | + return ans; |
| 153 | + } |
| 154 | +
|
| 155 | + long long int fibSum(long long int N) { |
| 156 | + vector<vector<long long int>> a = {{1, 1, 1}, {0, 1, 1}, {0, 1, 0}}; |
| 157 | + vector<vector<long long int>> ans = power(a, N); |
| 158 | + return ans[0][2]; |
| 159 | + } |
| 160 | +}; |
| 161 | +``` |
| 162 | + |
| 163 | +#### Code (Python): |
| 164 | + |
| 165 | +```python |
| 166 | +class Solution: |
| 167 | + MOD = int(1e9 + 7) |
| 168 | + |
| 169 | + def multiply(self, a, b): |
| 170 | + n = len(a) |
| 171 | + ans = [[0] * n for _ in range(n)] |
| 172 | + for i in range(n): |
| 173 | + for j in range(n): |
| 174 | + for k in range(n): |
| 175 | + ans[i][j] = (ans[i][j] + a[i][k] * b[k][j]) % self.MOD |
| 176 | + return ans |
| 177 | + |
| 178 | + def power(self, F, n): |
| 179 | + if n == 0: |
| 180 | + s = len(F) |
| 181 | + ans = [[0] * s for _ in range(s)] |
| 182 | + for i in range(s): |
| 183 | + ans[i][i] = 1 |
| 184 | + return ans |
| 185 | + if n == 1: |
| 186 | + return F |
| 187 | + temp = self.power(F, n // 2) |
| 188 | + ans = self.multiply(temp, temp) |
| 189 | + if n % 2 != 0: |
| 190 | + ans = self.multiply(ans, F) |
| 191 | + return ans |
| 192 | + |
| 193 | + def fibSum(self, N): |
| 194 | + a = [[1, 1, 1], [0, 1, 1], [0, 1, 0]] |
| 195 | + ans = self.power(a, N) |
| 196 | + return ans[0][2] |
| 197 | + |
| 198 | +# Example usage: |
| 199 | +solution = Solution() |
| 200 | +print(solution.fibSum(5)) # Output the sum of the first 5 Fibonacci numbers |
| 201 | +``` |
| 202 | + |
| 203 | +#### Code (Java): |
| 204 | + |
| 205 | +```java |
| 206 | +import java.util.Arrays; |
| 207 | + |
| 208 | +class Solution { |
| 209 | + private static final int MOD = 1000000007; |
| 210 | + |
| 211 | + private long[][] multiply(long[][] a, long[][] b) { |
| 212 | + int n = a.length; |
| 213 | + long[][] ans = new long[n][n]; |
| 214 | + for (int i = 0; i < n; i++) { |
| 215 | + for (int j = 0; j < n; j++) { |
| 216 | + for (int k = 0; k < n; k++) { |
| 217 | + ans[i][j] = (ans[i][j] + a[i][k] * b[k][j]) % MOD; |
| 218 | + } |
| 219 | + } |
| 220 | + } |
| 221 | + return ans; |
| 222 | + } |
| 223 | + |
| 224 | + private long[][] power(long[][] F, long n) { |
| 225 | + int size = F.length; |
| 226 | + long[][] ans = new long[size][size]; |
| 227 | + for (int i = 0; i < size; i++) { |
| 228 | + ans[i][i] = 1; |
| 229 | + } |
| 230 | + if (n == 0) return ans; |
| 231 | + if (n == 1) return F; |
| 232 | + |
| 233 | + long[][] temp = power(F, n / 2); |
| 234 | + ans = multiply(temp, temp); |
| 235 | + if (n % 2 != 0) { |
| 236 | + ans = multiply(ans, F); |
| 237 | + } |
| 238 | + return ans; |
| 239 | + } |
| 240 | + |
| 241 | + public long fibSum(long N) { |
| 242 | + long[][] a = {{1, 1, 1}, {0, 1, 1}, {0, 1, 0}}; |
| 243 | + long[][] ans = power(a, N); |
| 244 | + return ans[0][2]; |
| 245 | + } |
| 246 | + |
| 247 | + public static void main(String[] args) { |
| 248 | + Solution solution = new Solution(); |
| 249 | + System.out.println(solution.fibSum(5)); // Output the sum of the first 5 Fibonacci numbers |
| 250 | + } |
| 251 | +} |
| 252 | +``` |
| 253 | + |
| 254 | +#### Complexity: |
| 255 | + |
| 256 | +- Time Complexity: $O(logN)$, due to matrix exponentiation. |
| 257 | +- Space Complexity: $O(logN)$, for recursive stack |
| 258 | + |
| 259 | +## Conclusion |
| 260 | + |
| 261 | +The problem of finding the sum of the first N Fibonacci numbers can be efficiently solved using matrix exponentiation, reducing the time complexity to logarithmic time $O(\log N)$. This approach ensures that even for large values of N, the computation remains feasible and efficient. The provided implementations in C++, Java, and Python demonstrate the versatility of the matrix exponentiation technique across different programming languages. |
| 262 | + |
| 263 | +By leveraging the properties of Fibonacci numbers and matrix multiplication, we can achieve optimal performance for this problem, making it suitable for large input sizes as specified in the constraints. |
| 264 | + |
| 265 | +## References |
| 266 | + |
| 267 | +- **GeeksforGeeks Problem:** [Geeks for Geeks Problem](https://www.geeksforgeeks.org/problems/fibonacci-sum/0) |
| 268 | +- **Solution Link:** [Fibonacci Sum on Geeks for Geeks](https://www.geeksforgeeks.org/problems/fibonacci-sum/0) |
| 269 | +- **Authors GeeksforGeeks Profile:** [Vipul](https://www.geeksforgeeks.org/user/lakumvipwjge/) |
| 270 | + |
| 271 | +``` |
| 272 | +This structured tutorial provides a comprehensive solution to the Fibonacci Sum problem, making it easy for others to understand and implement in various programming languages. |
| 273 | +``` |
0 commit comments