Skip to content

Commit 90912e3

Browse files
Create 0560 - subarray-sum-equals-k.md
Add Solution to the leetcode problem 560 - SUbarray Sum equals K
1 parent 7f88fab commit 90912e3

File tree

1 file changed

+172
-0
lines changed

1 file changed

+172
-0
lines changed
Lines changed: 172 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,172 @@
1+
---
2+
id: subarray-sum-equals-k
3+
title: Subarray Sum Equals K
4+
sidebar_label: Subarray Sum Equals K
5+
tags:
6+
- Array
7+
- HashMap
8+
- Prefix Sum
9+
---
10+
11+
## Problem Description
12+
13+
| Problem Statement | Solution Link | LeetCode Profile |
14+
| :------------------------------------------------------ | :------------------------------------------------------------------------- | :------------------------------------------------------ |
15+
| [subarray-sum-equals-k](https://leetcode.com/problems/subarray-sum-equals-k/description/) | [subarray-sum-equals-k Solution on LeetCode](https://leetcode.com/problems/subarray-sum-equals-k/solutions/) | [Nikita Saini](https://leetcode.com/u/Saini_Nikita/) |
16+
17+
## Problem Description
18+
19+
Given an array of integers `nums` and an integer `k`, return the total number of subarrays whose sum equals to `k`.
20+
21+
A subarray is a contiguous non-empty sequence of elements within an array.
22+
23+
### Example 1
24+
25+
**Input**: `nums = [1,1,1], k = 2`
26+
**Output**: `2`
27+
28+
### Example 2
29+
30+
**Input**: `nums = [1,2,3], k = 3`
31+
**Output**: `2`
32+
33+
### Constraints
34+
35+
- `1 <= nums.length <= 2 * 10^4`
36+
- `-1000 <= nums[i] <= 1000`
37+
- `-10^7 <= k <= 10^7`
38+
39+
## Approach
40+
41+
To solve this problem efficiently, we can use a HashMap (dictionary in Python) to keep track of the cumulative sum of elements up to the current index and the number of times each cumulative sum has been encountered. This approach allows us to determine the number of subarrays that sum to `k` in linear time.
42+
43+
### Step-by-Step Algorithm
44+
45+
1. Initialize a dictionary `prefix_sum_count` to store the frequency of prefix sums. Start with the prefix sum `0` having a count of `1`.
46+
2. Initialize `current_sum` to `0` and `count` to `0`.
47+
3. Iterate through each element in the array:
48+
- Add the current element to `current_sum`.
49+
- If `current_sum - k` exists in `prefix_sum_count`, it means there are subarrays ending at the current index that sum to `k`. Add the count of `current_sum - k` to `count`.
50+
- Increment the count of `current_sum` in `prefix_sum_count`.
51+
4. Return `count`.
52+
53+
## Solution in Python
54+
55+
```python
56+
def subarraySum(nums, k):
57+
prefix_sum_count = {0: 1}
58+
current_sum = 0
59+
count = 0
60+
61+
for num in nums:
62+
current_sum += num
63+
if (current_sum - k) in prefix_sum_count:
64+
count += prefix_sum_count[current_sum - k]
65+
if current_sum in prefix_sum_count:
66+
prefix_sum_count[current_sum] += 1
67+
else:
68+
prefix_sum_count[current_sum] = 1
69+
70+
return count
71+
```
72+
73+
## Solution in Java
74+
75+
```java
76+
import java.util.HashMap;
77+
import java.util.Map;
78+
79+
public class Solution {
80+
public int subarraySum(int[] nums, int k) {
81+
Map<Integer, Integer> prefixSumCount = new HashMap<>();
82+
prefixSumCount.put(0, 1);
83+
int current_sum = 0;
84+
int count = 0;
85+
86+
for (int num : nums) {
87+
current_sum += num;
88+
if (prefixSumCount.containsKey(current_sum - k)) {
89+
count += prefixSumCount.get(current_sum - k);
90+
}
91+
prefixSumCount.put(current_sum, prefixSumCount.getOrDefault(current_sum, 0) + 1);
92+
}
93+
94+
return count;
95+
}
96+
}
97+
```
98+
99+
## Solution in C++
100+
101+
```cpp
102+
#include <vector>
103+
#include <unordered_map>
104+
105+
class Solution {
106+
public:
107+
int subarraySum(std::vector<int>& nums, int k) {
108+
std::unordered_map<int, int> prefixSumCount = {{0, 1}};
109+
int current_sum = 0;
110+
int count = 0;
111+
112+
for (int num : nums) {
113+
current_sum += num;
114+
if (prefixSumCount.find(current_sum - k) != prefixSumCount.end()) {
115+
count += prefixSumCount[current_sum - k];
116+
}
117+
prefixSumCount[current_sum]++;
118+
}
119+
120+
return count;
121+
}
122+
};
123+
```
124+
125+
## Solution in C
126+
127+
```c
128+
#include <stdio.h>
129+
#include <stdlib.h>
130+
131+
int subarraySum(int* nums, int numsSize, int k) {
132+
int *prefixSumCount = (int*)calloc(numsSize * 2000, sizeof(int)); // Assuming numsSize <= 20000
133+
prefixSumCount[numsSize] = 1; // Initial prefix sum 0
134+
135+
int current_sum = 0;
136+
int count = 0;
137+
138+
for (int i = 0; i < numsSize; i++) {
139+
current_sum += nums[i];
140+
int target_sum = current_sum - k;
141+
count += prefixSumCount[target_sum + numsSize];
142+
prefixSumCount[current_sum + numsSize]++;
143+
}
144+
145+
free(prefixSumCount);
146+
return count;
147+
}
148+
```
149+
150+
## Solution in JavaScript
151+
152+
```javascript
153+
var subarraySum = function(nums, k) {
154+
let prefixSumCount = {0: 1};
155+
let current_sum = 0;
156+
let count = 0;
157+
158+
for (let num of nums) {
159+
current_sum += num;
160+
if (prefixSumCount[current_sum - k] !== undefined) {
161+
count += prefixSumCount[current_sum - k];
162+
}
163+
prefixSumCount[current_sum] = (prefixSumCount[current_sum] || 0) + 1;
164+
}
165+
166+
return count;
167+
};
168+
```
169+
170+
## Conclusion
171+
172+
The described algorithm efficiently finds the number of subarrays that sum up to a given value `k` using a HashMap to store prefix sums. This approach ensures that the solution runs in linear time, making it suitable for large input sizes.

0 commit comments

Comments
 (0)