Skip to content

Commit 6dfae53

Browse files
Update Introduction.md for equation rendering
1 parent 03fb6ef commit 6dfae53

File tree

1 file changed

+3
-4
lines changed

1 file changed

+3
-4
lines changed

docs/Deep Learning/Optimizers in Deep Learning/Introduction.md

Lines changed: 3 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -42,7 +42,7 @@ SGD updates the weights for each training example, rather than at the end of eac
4242

4343
**Mathematical Equation:**
4444

45-
$$ \theta = \theta - \eta \nabla J(\theta; x^{(i)}; y^{(i)}) $$
45+
$$\theta = \theta - \eta \nabla J(\theta; x^{(i)}; y^{(i)})$$
4646

4747
**Keras Code:**
4848

@@ -75,7 +75,7 @@ AdaGrad adapts the learning rate to the parameters, performing larger updates fo
7575

7676
**Mathematical Equation:**
7777

78-
$$\theta = \theta - \frac{\eta}{\sqrt{G_{ii} + \epsilon}} \nabla J(\theta)$$
78+
$$ \theta = \theta - \frac{\eta}{\sqrt{G_{ii} + \epsilon}} \nabla J(\theta) $$
7979

8080
**Keras Code:**
8181

@@ -91,8 +91,7 @@ RMSprop modifies AdaGrad to perform better in the non-convex setting by changing
9191

9292
**Mathematical Equation:**
9393

94-
$$ E[g^2]_t = \gamma E[g^2]_{t-1} + (1 - \gamma) g_t^2 $$
95-
$$ \theta = \theta - \frac{\eta}{\sqrt{E[g^2]_t + \epsilon}} \nabla J(\theta) $$
94+
$$\theta = \theta - \frac{\eta}{\sqrt{E[g^2]_t + \epsilon}} \nabla J(\theta)$$
9695

9796
**Keras Code:**
9897

0 commit comments

Comments
 (0)