|
| 1 | +--- |
| 2 | +id: sqrt-x |
| 3 | +title: Sqrt(x) (LeetCode) |
| 4 | +difficulty: Easy |
| 5 | +sidebar_label: 0069-SqrtX |
| 6 | +topics: |
| 7 | + - Math |
| 8 | + - Binary Search |
| 9 | +--- |
| 10 | + |
| 11 | + |
| 12 | +## Problem Description |
| 13 | + |
| 14 | +| Problem Statement | Solution Link | LeetCode Profile | |
| 15 | +| :---------------- | :------------ | :--------------- | |
| 16 | +| [Merge Two Sorted Lists](https://leetcode.com/problems/sqrtx/) | [Merge Two Sorted Lists Solution on LeetCode](https://leetcode.com/problems/sqrtx/solutions/) | [VijayShankerSharma](https://leetcode.com/u/darkknight648/) | |
| 17 | + |
| 18 | +## Problem Description |
| 19 | + |
| 20 | +Given a non-negative integer `x`, return the square root of `x` rounded down to the nearest integer. The returned integer should be non-negative as well. |
| 21 | + |
| 22 | +You must not use any built-in exponent function or operator. |
| 23 | + |
| 24 | +### Examples |
| 25 | + |
| 26 | +#### Example 1: |
| 27 | + |
| 28 | +- **Input:** `x = 4` |
| 29 | +- **Output:** `2` |
| 30 | +- **Explanation:** The square root of 4 is 2, so we return 2. |
| 31 | + |
| 32 | +#### Example 2: |
| 33 | + |
| 34 | +- **Input:** `x = 8` |
| 35 | +- **Output:** `2` |
| 36 | +- **Explanation:** The square root of 8 is approximately 2.82842..., and since we round it down to the nearest integer, 2 is returned. |
| 37 | + |
| 38 | +### Constraints: |
| 39 | + |
| 40 | +- `0 <= x <= 2^31 - 1` |
| 41 | + |
| 42 | +### Approach |
| 43 | + |
| 44 | +To find the square root of a non-negative integer `x` without using built-in functions, we can use binary search within the range `[0, x]`. |
| 45 | + |
| 46 | +1. Initialize variables `left` and `right` to represent the search range `[0, x]`. |
| 47 | +2. Perform binary search within this range, updating the `mid` value as `(left + right) / 2`. |
| 48 | +3. If `mid * mid` is greater than `x`, update `right` to `mid - 1`. |
| 49 | +4. If `mid * mid` is less than or equal to `x`, update `left` to `mid + 1`. |
| 50 | +5. Repeat steps 2-4 until `left` is greater than `right`. |
| 51 | +6. Return the value of `right`, which represents the largest integer whose square is less than or equal to `x`. |
| 52 | + |
| 53 | +### Solution Code |
| 54 | + |
| 55 | +#### Python |
| 56 | + |
| 57 | +``` |
| 58 | +class Solution(object): |
| 59 | + def mySqrt(self, x): |
| 60 | + if x < 2: |
| 61 | + return x |
| 62 | + left, right = 1, x |
| 63 | + while left <= right: |
| 64 | + mid = (left + right) // 2 |
| 65 | + if mid * mid == x: |
| 66 | + return mid |
| 67 | + elif mid * mid < x: |
| 68 | + left = mid + 1 |
| 69 | + else: |
| 70 | + right = mid - 1 |
| 71 | + return right |
| 72 | +``` |
| 73 | + |
| 74 | +#### C++ |
| 75 | + |
| 76 | +``` |
| 77 | +class Solution { |
| 78 | +public: |
| 79 | + int mySqrt(int x) { |
| 80 | + if (x == 0) { |
| 81 | + return 0; |
| 82 | + } |
| 83 | + |
| 84 | + long left = 1, right = x; |
| 85 | + while (left <= right) { |
| 86 | + long mid = (left + right) / 2; |
| 87 | + if (mid * mid == x) { |
| 88 | + return mid; |
| 89 | + } else if (mid * mid < x) { |
| 90 | + left = mid + 1; |
| 91 | + } else { |
| 92 | + right = mid - 1; |
| 93 | + } |
| 94 | + } |
| 95 | + |
| 96 | + return right; |
| 97 | + } |
| 98 | +}; |
| 99 | +``` |
| 100 | + |
| 101 | +#### Java |
| 102 | + |
| 103 | +``` |
| 104 | +class Solution { |
| 105 | + public int mySqrt(int x) { |
| 106 | + if (x == 0) { |
| 107 | + return 0; |
| 108 | + } |
| 109 | + |
| 110 | + long left = 1, right = x; |
| 111 | + while (left <= right) { |
| 112 | + long mid = (left + right) / 2; |
| 113 | + if (mid * mid == x) { |
| 114 | + return (int)mid; |
| 115 | + } else if (mid * mid < x) { |
| 116 | + left = mid + 1; |
| 117 | + } else { |
| 118 | + right = mid - 1; |
| 119 | + } |
| 120 | + } |
| 121 | + |
| 122 | + return (int)right; |
| 123 | + } |
| 124 | +} |
| 125 | +``` |
| 126 | + |
| 127 | +### Conclusion |
| 128 | + |
| 129 | +The "Sqrt(x)" problem can be efficiently solved using binary search within the range `[0, x]`. The provided solution code implements this approach in Python, C++, and Java, providing an optimal solution to the problem. |
0 commit comments