|
| 1 | +--- |
| 2 | +id: Happy-Number |
| 3 | +title: Happy Number |
| 4 | +sidebar_label: Happy Number |
| 5 | +tags: |
| 6 | + - Math |
| 7 | + - Hash Table |
| 8 | + - Two Pointers |
| 9 | +--- |
| 10 | + |
| 11 | +## Problem Description |
| 12 | + |
| 13 | +| Problem Statement | Solution Link | LeetCode Profile | |
| 14 | +| :------------------------------------------------------ | :------------------------------------------------------------------------- | :------------------------------------------------------ | |
| 15 | +| [Happy-Number](https://leetcode.com/problems/Happy-Number/description/) | [Happy-Number Solution on LeetCode](https://leetcode.com/problems/Happy-Number/solutions/) | [Nikita Saini](https://leetcode.com/u/Saini_Nikita/) | |
| 16 | + |
| 17 | +## Problem Description |
| 18 | + |
| 19 | +A happy number is a number defined by the following process: |
| 20 | +Starting with any positive integer, replace the number by the sum of the squares of its digits. |
| 21 | +Repeat the process until the number equals 1 (where it will stay), or it loops endlessly in a cycle which does not include 1. |
| 22 | +Those numbers for which this process ends in 1 are happy. |
| 23 | + |
| 24 | +Given a positive integer `n`, determine if it is a happy number. |
| 25 | + |
| 26 | +### Example 1: |
| 27 | + |
| 28 | +Input: `n = 19` |
| 29 | +Output: `true` |
| 30 | +Explanation: |
| 31 | +1^2 + 9^2 = 82 |
| 32 | +8^2 + 2^2 = 68 |
| 33 | +6^2 + 8^2 = 100 |
| 34 | +1^2 + 0^2 + 0^2 = 1 |
| 35 | + |
| 36 | +### Example 2: |
| 37 | + |
| 38 | +Input: `n = 2` |
| 39 | +Output: `false` |
| 40 | +Explanation: |
| 41 | +2^2 = 4 |
| 42 | +4^2 = 16 |
| 43 | +1^2 + 6^2 = 37 |
| 44 | +3^2 + 7^2 = 58 |
| 45 | +5^2 + 8^2 = 89 |
| 46 | +8^2 + 9^2 = 145 |
| 47 | +1^2 + 4^2 + 5^2 = 42 |
| 48 | +4^2 + 2^2 = 20 |
| 49 | +2^2 + 0^2 = 4 (cycle repeats endlessly) |
| 50 | + |
| 51 | +## Constraints |
| 52 | + |
| 53 | +- `1 <= n <= 2^31 - 1` |
| 54 | + |
| 55 | +## Approach |
| 56 | + |
| 57 | +To determine if a number `n` is a happy number: |
| 58 | +1. Use a set to keep track of numbers seen during the process to detect cycles. |
| 59 | +2. Repeat the process of replacing `n` by the sum of the squares of its digits until `n` becomes 1 or a cycle is detected (a number repeats). |
| 60 | +3. If `n` becomes 1, return true; otherwise, return false. |
| 61 | + |
| 62 | +## Solution in Python |
| 63 | + |
| 64 | +```python |
| 65 | +def isHappy(n: int) -> bool: |
| 66 | + seen = set() |
| 67 | + while n != 1 and n not in seen: |
| 68 | + seen.add(n) |
| 69 | + n = sum(int(digit)**2 for digit in str(n)) |
| 70 | + return n == 1 |
| 71 | +``` |
| 72 | + |
| 73 | +## Solution in Java |
| 74 | +```java |
| 75 | +import java.util.HashSet; |
| 76 | +import java.util.Set; |
| 77 | + |
| 78 | +class Solution { |
| 79 | + public boolean isHappy(int n) { |
| 80 | + Set<Integer> seen = new HashSet<>(); |
| 81 | + while (n != 1 && !seen.contains(n)) { |
| 82 | + seen.add(n); |
| 83 | + int sum = 0; |
| 84 | + while (n > 0) { |
| 85 | + int digit = n % 10; |
| 86 | + sum += digit * digit; |
| 87 | + n /= 10; |
| 88 | + } |
| 89 | + n = sum; |
| 90 | + } |
| 91 | + return n == 1; |
| 92 | + } |
| 93 | +} |
| 94 | +``` |
| 95 | + |
| 96 | +## Solution in C++ |
| 97 | +```cpp |
| 98 | +class Solution { |
| 99 | +public: |
| 100 | + bool isHappy(int n) { |
| 101 | + unordered_set<int> seen; |
| 102 | + while (n != 1 && seen.find(n) == seen.end()) { |
| 103 | + seen.insert(n); |
| 104 | + int sum = 0; |
| 105 | + while (n > 0) { |
| 106 | + int digit = n % 10; |
| 107 | + sum += digit * digit; |
| 108 | + n /= 10; |
| 109 | + } |
| 110 | + n = sum; |
| 111 | + } |
| 112 | + return n == 1; |
| 113 | + } |
| 114 | +}; |
| 115 | +``` |
| 116 | +
|
| 117 | +## Solution in C |
| 118 | +```c |
| 119 | +#include <stdbool.h> |
| 120 | +#include <stdio.h> |
| 121 | +#include <stdlib.h> |
| 122 | +
|
| 123 | +bool isHappy(int n) { |
| 124 | + int seen[1000] = {0}; |
| 125 | + while (n != 1 && !seen[n]) { |
| 126 | + seen[n] = 1; |
| 127 | + int sum = 0; |
| 128 | + while (n > 0) { |
| 129 | + int digit = n % 10; |
| 130 | + sum += digit * digit; |
| 131 | + n /= 10; |
| 132 | + } |
| 133 | + n = sum; |
| 134 | + } |
| 135 | + return n == 1; |
| 136 | +} |
| 137 | +``` |
| 138 | + |
| 139 | +## Solution in JavaScript |
| 140 | +```js |
| 141 | +var isHappy = function(n) { |
| 142 | + let seen = new Set(); |
| 143 | + while (n !== 1 && !seen.has(n)) { |
| 144 | + seen.add(n); |
| 145 | + n = String(n).split('').reduce((sum, digit) => sum + digit * digit, 0); |
| 146 | + } |
| 147 | + return n === 1; |
| 148 | +}; |
| 149 | +``` |
| 150 | + |
| 151 | +## Step-By_Step Algorithm |
| 152 | +1. Initialize an empty set `seen` to keep track of numbers encountered. |
| 153 | +2. While `n` is not 1 and `n` is not in `seen`: |
| 154 | + - Add `n` to `seen`. |
| 155 | + - Compute the sum of the squares of its digits for `n`. |
| 156 | + - Update `n` to this computed sum. |
| 157 | +3. Check if `n` equals 1. If yes, return true (it is a happy number). If no, return false (it is not a happy number). |
| 158 | + |
| 159 | +## Conclusion |
| 160 | +The provided solutions use a similar approach to solve the happy number problem across different programming languages. They efficiently detect cycles and determine if a number eventually leads to 1 or loops endlessly. The use of a set ensures that the algorithm runs in linear time relative to the number of digits in `n`, making it suitable for the given constraints. |
| 161 | + |
0 commit comments