|
| 1 | +--- |
| 2 | +id: Evaluate-Reverse-Polish_Notation |
| 3 | +title: Evaluate-Reverse-Polish_Notation |
| 4 | +sidebar_label: Evaluate-Reverse-Polish_Notation |
| 5 | +tags: |
| 6 | + - Reverse Polish Notation |
| 7 | + - Stack |
| 8 | + - Evaluation |
| 9 | +--- |
| 10 | + |
| 11 | +## Problem Description |
| 12 | + |
| 13 | +| Problem Statement | Solution Link | LeetCode Profile | |
| 14 | +| :------------------------------------------------------ | :------------------------------------------------------------------------- | :------------------------------------------------------ | |
| 15 | +| [Evaluate-Reverse-Polish_Notation](https://leetcode.com/problems/Evaluate-Reverse-Polish_Notation/description/) | [Evaluate-Reverse-Polish_Notation Solution on LeetCode](https://leetcode.com/problems/Evaluate-Reverse-Polish_Notation/solutions/) | [Nikita Saini](https://leetcode.com/u/Saini_Nikita/) | |
| 16 | + |
| 17 | +## Problem Description |
| 18 | + |
| 19 | +You are given an array of strings `tokens` that represents an arithmetic expression in Reverse Polish Notation. |
| 20 | + |
| 21 | +Evaluate the expression and return an integer that represents the value of the expression. |
| 22 | + |
| 23 | +Note that: |
| 24 | +- The valid operators are '+', '-', '*', and '/'. |
| 25 | +- Each operand may be an integer or another expression. |
| 26 | +- The division between two integers always truncates toward zero. |
| 27 | +- There will not be any division by zero. |
| 28 | +- The input represents a valid arithmetic expression in reverse polish notation. |
| 29 | +- The answer and all the intermediate calculations can be represented in a 32-bit integer. |
| 30 | + |
| 31 | +### Examples |
| 32 | + |
| 33 | +#### Example 1 |
| 34 | +**Input**: `tokens = ["2", "1", "+", "3", "*"]` |
| 35 | +**Output**: `9` |
| 36 | +**Explanation**: ((2 + 1) * 3) = 9 |
| 37 | + |
| 38 | +#### Example 2 |
| 39 | +**Input**: `tokens = ["4", "13", "5", "/", "+"]` |
| 40 | +**Output**: `6` |
| 41 | +**Explanation**: (4 + (13 / 5)) = 6 |
| 42 | + |
| 43 | +#### Example 3 |
| 44 | +**Input**: `tokens = ["10", "6", "9", "3", "+", "-11", "*", "/", "*", "17", "+", "5", "+"]` |
| 45 | +**Output**: `22` |
| 46 | +**Explanation**: |
| 47 | +((10 * (6 / ((9 + 3) * -11))) + 17) + 5 |
| 48 | += ((10 * (6 / (12 * -11))) + 17) + 5 |
| 49 | += ((10 * (6 / -132)) + 17) + 5 |
| 50 | += ((10 * 0) + 17) + 5 |
| 51 | += (0 + 17) + 5 |
| 52 | += 17 + 5 |
| 53 | += 22 |
| 54 | + |
| 55 | +## Constraints |
| 56 | + |
| 57 | +- `1 <= tokens.length <= 10^4` |
| 58 | +- `tokens[i]` is either an operator: `"+"`, `"-"`, `"*"` or `"/"`, or an integer in the range `[-200, 200]`. |
| 59 | + |
| 60 | +## Approach |
| 61 | + |
| 62 | +1. Initialize an empty stack. |
| 63 | +2. Iterate over each token in the `tokens` array: |
| 64 | + - If the token is an operand (integer), push it onto the stack. |
| 65 | + - If the token is an operator, pop the necessary number of operands from the stack, apply the operator, and push the result back onto the stack. |
| 66 | +3. The final result will be the only element left in the stack. |
| 67 | + |
| 68 | +## Solution in different languages: |
| 69 | + |
| 70 | +### Solution in Python |
| 71 | +```python |
| 72 | +def evalRPN(tokens): |
| 73 | + stack = [] |
| 74 | + for token in tokens: |
| 75 | + if token in "+-*/": |
| 76 | + b = stack.pop() |
| 77 | + a = stack.pop() |
| 78 | + if token == '+': |
| 79 | + stack.append(a + b) |
| 80 | + elif token == '-': |
| 81 | + stack.append(a - b) |
| 82 | + elif token == '*': |
| 83 | + stack.append(a * b) |
| 84 | + elif token == '/': |
| 85 | + stack.append(int(a / b)) # use int() for truncating towards zero |
| 86 | + else: |
| 87 | + stack.append(int(token)) |
| 88 | + return stack[0] |
| 89 | +``` |
| 90 | + |
| 91 | +### Solution in Java |
| 92 | +```java |
| 93 | +import java.util.Stack; |
| 94 | + |
| 95 | +class Solution { |
| 96 | + public int evalRPN(String[] tokens) { |
| 97 | + Stack<Integer> stack = new Stack<>(); |
| 98 | + for (String token : tokens) { |
| 99 | + if ("+-*/".contains(token)) { |
| 100 | + int b = stack.pop(); |
| 101 | + int a = stack.pop(); |
| 102 | + switch (token) { |
| 103 | + case "+": |
| 104 | + stack.push(a + b); |
| 105 | + break; |
| 106 | + case "-": |
| 107 | + stack.push(a - b); |
| 108 | + break; |
| 109 | + case "*": |
| 110 | + stack.push(a * b); |
| 111 | + break; |
| 112 | + case "/": |
| 113 | + stack.push(a / b); |
| 114 | + break; |
| 115 | + } |
| 116 | + } else { |
| 117 | + stack.push(Integer.parseInt(token)); |
| 118 | + } |
| 119 | + } |
| 120 | + return stack.pop(); |
| 121 | + } |
| 122 | +} |
| 123 | +``` |
| 124 | + |
| 125 | +### Solution in C++ |
| 126 | +```cpp |
| 127 | +#include <vector> |
| 128 | +#include <string> |
| 129 | +#include <stack> |
| 130 | + |
| 131 | +class Solution { |
| 132 | +public: |
| 133 | + int evalRPN(std::vector<std::string>& tokens) { |
| 134 | + std::stack<int> stack; |
| 135 | + for (const std::string& token : tokens) { |
| 136 | + if (token == "+" || token == "-" || token == "*" || token == "/") { |
| 137 | + int b = stack.top(); stack.pop(); |
| 138 | + int a = stack.top(); stack.pop(); |
| 139 | + if (token == "+") stack.push(a + b); |
| 140 | + else if (token == "-") stack.push(a - b); |
| 141 | + else if (token == "*") stack.push(a * b); |
| 142 | + else if (token == "/") stack.push(a / b); |
| 143 | + } else { |
| 144 | + stack.push(std::stoi(token)); |
| 145 | + } |
| 146 | + } |
| 147 | + return stack.top(); |
| 148 | + } |
| 149 | +}; |
| 150 | +``` |
| 151 | +
|
| 152 | +### Solution in C |
| 153 | +```c |
| 154 | +#include <stdio.h> |
| 155 | +#include <stdlib.h> |
| 156 | +#include <string.h> |
| 157 | +
|
| 158 | +#define STACK_SIZE 10000 |
| 159 | +
|
| 160 | +typedef struct { |
| 161 | + int data[STACK_SIZE]; |
| 162 | + int top; |
| 163 | +} Stack; |
| 164 | +
|
| 165 | +void init(Stack* s) { |
| 166 | + s->top = -1; |
| 167 | +} |
| 168 | +
|
| 169 | +void push(Stack* s, int value) { |
| 170 | + s->data[++s->top] = value; |
| 171 | +} |
| 172 | +
|
| 173 | +int pop(Stack* s) { |
| 174 | + return s->data[s->top--]; |
| 175 | +} |
| 176 | +
|
| 177 | +int evalRPN(char ** tokens, int tokensSize){ |
| 178 | + Stack stack; |
| 179 | + init(&stack); |
| 180 | + for (int i = 0; i < tokensSize; i++) { |
| 181 | + char *token = tokens[i]; |
| 182 | + if (strcmp(token, "+") == 0 || strcmp(token, "-") == 0 || strcmp(token, "*") == 0 || strcmp(token, "/") == 0) { |
| 183 | + int b = pop(&stack); |
| 184 | + int a = pop(&stack); |
| 185 | + if (strcmp(token, "+") == 0) push(&stack, a + b); |
| 186 | + else if (strcmp(token, "-") == 0) push(&stack, a - b); |
| 187 | + else if (strcmp(token, "*") == 0) push(&stack, a * b); |
| 188 | + else if (strcmp(token, "/") == 0) push(&stack, a / b); |
| 189 | + } else { |
| 190 | + push(&stack, atoi(token)); |
| 191 | + } |
| 192 | + } |
| 193 | + return pop(&stack); |
| 194 | +} |
| 195 | +``` |
| 196 | + |
| 197 | +### Solution in JavaScript |
| 198 | +```js |
| 199 | +var evalRPN = function(tokens) { |
| 200 | + const stack = []; |
| 201 | + for (const token of tokens) { |
| 202 | + if ("+-*/".includes(token)) { |
| 203 | + const b = stack.pop(); |
| 204 | + const a = stack.pop(); |
| 205 | + switch (token) { |
| 206 | + case '+': |
| 207 | + stack.push(a + b); |
| 208 | + break; |
| 209 | + case '-': |
| 210 | + stack.push(a - b); |
| 211 | + break; |
| 212 | + case '*': |
| 213 | + stack.push(a * b); |
| 214 | + break; |
| 215 | + case '/': |
| 216 | + stack.push(Math.trunc(a / b)); |
| 217 | + break; |
| 218 | + } |
| 219 | + } else { |
| 220 | + stack.push(Number(token)); |
| 221 | + } |
| 222 | + } |
| 223 | + return stack[0]; |
| 224 | +}; |
| 225 | +``` |
| 226 | + |
| 227 | +### Step-by-step Algorithm |
| 228 | +1. Initialize an empty stack. |
| 229 | +2. Iterate through each token in the `tokens` list. |
| 230 | +3. If the token is an operand (number), push it onto the stack. |
| 231 | +4. If the token is an operator, pop two operands from the stack. |
| 232 | + - Apply the operator on the two operands. |
| 233 | + - Push the result back onto the stack. |
| 234 | +5. Continue this process until all tokens are processed. |
| 235 | +6. The final result will be the last item remaining in the stack. |
| 236 | + |
| 237 | +### Conclusion |
| 238 | +The Reverse Polish Notation evaluation is efficiently handled using a stack. This approach ensures that we can process the expression in a single pass through the tokens, leading to a time complexity of O(n) and a space complexity of O(n) where n is the number of tokens. |
0 commit comments