|
| 1 | +--- |
| 2 | +id: score-after-flipping-matrix |
| 3 | +title: Score After Flipping Matrix |
| 4 | +level: medium |
| 5 | +sidebar_label: Score After Flipping Matrix |
| 6 | +tags: |
| 7 | + - Array |
| 8 | + - Greedy |
| 9 | + - Matrix |
| 10 | + - Java |
| 11 | +description: "This document provides solutions for the Score After Flipping Matrix problem." |
| 12 | +--- |
| 13 | + |
| 14 | +## Problem Statement |
| 15 | + |
| 16 | +You are given an `m x n` binary matrix `grid`. |
| 17 | + |
| 18 | +A move consists of choosing any row or column and toggling each value in that row or column (i.e., changing all 0's to 1's, and all 1's to 0's). |
| 19 | + |
| 20 | +Every row of the matrix is interpreted as a binary number, and the score of the matrix is the sum of these numbers. |
| 21 | + |
| 22 | +Return the highest possible score after making any number of moves (including zero moves). |
| 23 | + |
| 24 | +**Example 1:** |
| 25 | + |
| 26 | +Input: `grid = [[0,0,1,1],[1,0,1,0],[1,1,0,0]]` |
| 27 | + |
| 28 | +Output: `39` |
| 29 | + |
| 30 | +Explanation: `0b1111 + 0b1001 + 0b1111 = 15 + 9 + 15 = 39` |
| 31 | + |
| 32 | +**Example 2:** |
| 33 | + |
| 34 | +Input: `grid = [[0]]` |
| 35 | + |
| 36 | +Output: `1` |
| 37 | + |
| 38 | +**Constraints:** |
| 39 | + |
| 40 | +- `m == grid.length` |
| 41 | +- `n == grid[i].length` |
| 42 | +- `1 <= m, n <= 20` |
| 43 | +- `grid[i][j]` is `0` or `1`. |
| 44 | + |
| 45 | +## Solutions |
| 46 | + |
| 47 | +### Approach |
| 48 | + |
| 49 | +To maximize the score, follow these steps: |
| 50 | + |
| 51 | +1. **Row Flipping:** |
| 52 | + - Ensure that each row starts with a `1` by flipping rows where the first element is `0`. |
| 53 | + |
| 54 | +2. **Column Flipping:** |
| 55 | + - For each column, if the number of `0`s exceeds the number of `1`s, flip the column to maximize the number of `1`s in that column. |
| 56 | + |
| 57 | +3. **Calculate Score:** |
| 58 | + - Convert each row from binary to decimal and sum these values to get the final score. |
| 59 | + |
| 60 | +### Java |
| 61 | + |
| 62 | +```java |
| 63 | +class Solution { |
| 64 | + public int matrixScore(int[][] grid) { |
| 65 | + int m = grid.length; |
| 66 | + int n = grid[0].length; |
| 67 | + int i = 0, j = 0; |
| 68 | + |
| 69 | + for (i = 0; i < m; i++) { |
| 70 | + if (grid[i][0] == 0) { |
| 71 | + flipRow(grid, i); |
| 72 | + } |
| 73 | + } |
| 74 | + |
| 75 | + for (j = 0; j < n; j++) { |
| 76 | + if (searchColZeroes(grid, j) > searchColOnes(grid, j)) { |
| 77 | + flipCol(grid, j); |
| 78 | + } |
| 79 | + } |
| 80 | + |
| 81 | + int sum = 0; |
| 82 | + for (i = 0; i < grid.length; i++) { |
| 83 | + int count = 0; |
| 84 | + int temp = grid[0].length - 1; |
| 85 | + for (j = 0; j < grid[0].length; j++) { |
| 86 | + count += (int) (grid[i][j] * Math.pow(2, temp--)); |
| 87 | + } |
| 88 | + sum += count; |
| 89 | + } |
| 90 | + return sum; |
| 91 | + } |
| 92 | + |
| 93 | + public int searchColZeroes(int[][] grid, int j) { |
| 94 | + int count = 0; |
| 95 | + for (int temp = 0; temp < grid.length; temp++) { |
| 96 | + if (grid[temp][j] == 0) { |
| 97 | + count++; |
| 98 | + } |
| 99 | + } |
| 100 | + return count; |
| 101 | + } |
| 102 | + |
| 103 | + public int searchColOnes(int[][] grid, int j) { |
| 104 | + int count = 0; |
| 105 | + for (int temp = 0; temp < grid.length; temp++) { |
| 106 | + if (grid[temp][j] == 1) { |
| 107 | + count++; |
| 108 | + } |
| 109 | + } |
| 110 | + return count; |
| 111 | + } |
| 112 | + |
| 113 | + public void flipCol(int[][] grid, int j) { |
| 114 | + for (int temp = 0; temp < grid.length; temp++) { |
| 115 | + grid[temp][j] = (grid[temp][j] == 0) ? 1 : 0; |
| 116 | + } |
| 117 | + } |
| 118 | + |
| 119 | + public void flipRow(int[][] grid, int i) { |
| 120 | + for (int temp = 0; temp < grid[0].length; temp++) { |
| 121 | + grid[i][temp] = (grid[i][temp] == 0) ? 1 : 0; |
| 122 | + } |
| 123 | + } |
| 124 | +} |
| 125 | +``` |
| 126 | + |
| 127 | +### Python |
| 128 | +```Python |
| 129 | +class Solution: |
| 130 | + def matrixScore(self, grid: List[List[int]]) -> int: |
| 131 | + m = len(grid) |
| 132 | + n = len(grid[0]) |
| 133 | + |
| 134 | + # Step 1: Ensure all rows start with '1' by flipping rows where grid[i][0] == 0 |
| 135 | + for i in range(m): |
| 136 | + if grid[i][0] == 0: |
| 137 | + self.flipRow(grid, i) |
| 138 | + |
| 139 | + # Step 2: Ensure each column has more '1's than '0's by flipping columns if necessary |
| 140 | + for j in range(n): |
| 141 | + if self.searchColZeroes(grid, j) > self.searchColOnes(grid, j): |
| 142 | + self.flipCol(grid, j) |
| 143 | + |
| 144 | + # Step 3: Calculate the matrix score |
| 145 | + score = 0 |
| 146 | + for i in range(m): |
| 147 | + row_sum = 0 |
| 148 | + for j in range(n): |
| 149 | + row_sum += grid[i][j] * (1 << (n - 1 - j)) # Equivalent to grid[i][j] * 2^(n-1-j) |
| 150 | + score += row_sum |
| 151 | + |
| 152 | + return score |
| 153 | + |
| 154 | + def searchColZeroes(self, grid: List[List[int]], j: int) -> int: |
| 155 | + count = 0 |
| 156 | + for i in range(len(grid)): |
| 157 | + if grid[i][j] == 0: |
| 158 | + count += 1 |
| 159 | + return count |
| 160 | + |
| 161 | + def searchColOnes(self, grid: List[List[int]], j: int) -> int: |
| 162 | + count = 0 |
| 163 | + for i in range(len(grid)): |
| 164 | + if grid[i][j] == 1: |
| 165 | + count += 1 |
| 166 | + return count |
| 167 | + |
| 168 | + def flipCol(self, grid: List[List[int]], j: int) -> None: |
| 169 | + for i in range(len(grid)): |
| 170 | + grid[i][j] = 1 - grid[i][j] |
| 171 | + |
| 172 | + def flipRow(self, grid: List[List[int]], i: int) -> None: |
| 173 | + for j in range(len(grid[0])): |
| 174 | + grid[i][j] = 1 - grid[i][j] |
| 175 | + |
| 176 | +``` |
0 commit comments