Skip to content

Commit 1250e7b

Browse files
authored
Merge pull request #981 from nishant0708/q54
[Feature Request]: Want to Add Solution of Q54 of leetcode Maximum Subarray #931
2 parents 5cbc719 + c131d5e commit 1250e7b

File tree

1 file changed

+242
-0
lines changed

1 file changed

+242
-0
lines changed
Lines changed: 242 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,242 @@
1+
---
2+
id: spiral-matrix
3+
title: Spiral Matrix
4+
sidebar_label: 0054-Spiral-Matrix
5+
tags:
6+
- Array
7+
- Matrix
8+
- Simulation
9+
- C++
10+
- Java
11+
- Python
12+
description: "This document provides a solution to the Spiral Matrix problem, where the goal is to traverse a matrix in spiral order."
13+
---
14+
15+
## Problem
16+
17+
Given an `m x n` matrix, return all elements of the matrix in spiral order.
18+
19+
### Example 1:
20+
21+
Input:
22+
matrix = [
23+
[ 1, 2, 3 ],
24+
[ 4, 5, 6 ],
25+
[ 7, 8, 9 ]
26+
]
27+
28+
Output:
29+
[1, 2, 3, 6, 9, 8, 7, 4, 5]
30+
31+
### Example 2:
32+
33+
Input:
34+
matrix = [
35+
[1, 2, 3, 4],
36+
[5, 6, 7, 8],
37+
[9, 10, 11, 12]
38+
]
39+
40+
Output:
41+
[1, 2, 3, 4, 8, 12, 11, 10, 9, 5, 6, 7]
42+
43+
### Constraints:
44+
45+
- `m == matrix.length`
46+
- `n == matrix[i].length`
47+
- `1 <= m, n <= 10`
48+
- `-100 <= matrix[i][j] <= 100`
49+
50+
## Solution
51+
52+
To solve this problem, we need to simulate the traversal of the matrix in spiral order. We can define four boundaries to keep track of the rows and columns that we have already traversed: `top`, `bottom`, `left`, and `right`. We start at the top-left corner and move in the following order:
53+
54+
1. Traverse from left to right.
55+
2. Traverse downwards.
56+
3. Traverse from right to left.
57+
4. Traverse upwards.
58+
59+
We continue this process while adjusting the boundaries until all elements have been traversed.
60+
61+
### Step-by-Step Approach
62+
63+
1. Initialize `top`, `bottom`, `left`, and `right` boundaries.
64+
2. Use a loop to traverse the matrix until all elements are visited:
65+
- Traverse from left to right within the `top` boundary and increment `top`.
66+
- Traverse downwards within the `right` boundary and decrement `right`.
67+
- Traverse from right to left within the `bottom` boundary and decrement `bottom`.
68+
- Traverse upwards within the `left` boundary and increment `left`.
69+
70+
### Code in Different Languages
71+
72+
### C++ Solution
73+
74+
```cpp
75+
76+
#include <vector>
77+
using namespace std;
78+
79+
vector<int> spiralOrder(vector<vector<int>>& matrix) {
80+
if (matrix.empty()) return {};
81+
82+
int m = matrix.size(), n = matrix[0].size();
83+
vector<int> result;
84+
int top = 0, bottom = m - 1;
85+
int left = 0, right = n - 1;
86+
87+
while (top <= bottom && left <= right) {
88+
// Traverse from left to right
89+
for (int i = left; i <= right; ++i) {
90+
result.push_back(matrix[top][i]);
91+
}
92+
++top;
93+
94+
// Traverse downwards
95+
for (int i = top; i <= bottom; ++i) {
96+
result.push_back(matrix[i][right]);
97+
}
98+
--right;
99+
100+
if (top <= bottom) {
101+
// Traverse from right to left
102+
for (int i = right; i >= left; --i) {
103+
result.push_back(matrix[bottom][i]);
104+
}
105+
--bottom;
106+
}
107+
108+
if (left <= right) {
109+
// Traverse upwards
110+
for (int i = bottom; i >= top; --i) {
111+
result.push_back(matrix[i][left]);
112+
}
113+
++left;
114+
}
115+
}
116+
117+
return result;
118+
}
119+
120+
int main() {
121+
vector<vector<int>> matrix = {
122+
{1, 2, 3, 4},
123+
{5, 6, 7, 8},
124+
{9, 10, 11, 12}
125+
};
126+
vector<int> result = spiralOrder(matrix);
127+
for (int num : result) {
128+
cout << num << " ";
129+
}
130+
return 0;
131+
}
132+
</TabItem>
133+
```
134+
### JAVA Solution
135+
```java
136+
import java.util.ArrayList;
137+
import java.util.List;
138+
139+
public class SpiralMatrix {
140+
public List<Integer> spiralOrder(int[][] matrix) {
141+
List<Integer> result = new ArrayList<>();
142+
if (matrix.length == 0) return result;
143+
144+
int top = 0, bottom = matrix.length - 1;
145+
int left = 0, right = matrix[0].length - 1;
146+
147+
while (top <= bottom && left <= right) {
148+
for (int i = left; i <= right; i++) {
149+
result.add(matrix[top][i]);
150+
}
151+
top++;
152+
153+
for (int i = top; i <= bottom; i++) {
154+
result.add(matrix[i][right]);
155+
}
156+
right--;
157+
158+
if (top <= bottom) {
159+
for (int i = right; i >= left; i--) {
160+
result.add(matrix[bottom][i]);
161+
}
162+
bottom--;
163+
}
164+
165+
if (left <= right) {
166+
for (int i = bottom; i >= top; i--) {
167+
result.add(matrix[i][left]);
168+
}
169+
left++;
170+
}
171+
}
172+
173+
return result;
174+
}
175+
176+
public static void main(String[] args) {
177+
SpiralMatrix sm = new SpiralMatrix();
178+
int[][] matrix = {
179+
{1, 2, 3, 4},
180+
{5, 6, 7, 8},
181+
{9, 10, 11, 12}
182+
};
183+
System.out.println(sm.spiralOrder(matrix)); // Output: [1, 2, 3, 4, 8, 12, 11, 10, 9, 5, 6, 7]
184+
}
185+
}
186+
187+
```
188+
### Python Solution
189+
190+
```python
191+
def spiralOrder(matrix):
192+
if not matrix:
193+
return []
194+
195+
result = []
196+
top, bottom = 0, len(matrix) - 1
197+
left, right = 0, len(matrix[0]) - 1
198+
199+
while top <= bottom and left <= right:
200+
# Traverse from left to right
201+
for i in range(left, right + 1):
202+
result.append(matrix[top][i])
203+
top += 1
204+
205+
# Traverse downwards
206+
for i in range(top, bottom + 1):
207+
result.append(matrix[i][right])
208+
right -= 1
209+
210+
if top <= bottom:
211+
# Traverse from right to left
212+
for i in range(right, left - 1, -1):
213+
result.append(matrix[bottom][i])
214+
bottom -= 1
215+
216+
if left <= right:
217+
# Traverse upwards
218+
for i in range(bottom, top - 1, -1):
219+
result.append(matrix[i][left])
220+
left += 1
221+
222+
return result
223+
224+
matrix = [
225+
[1, 2, 3, 4],
226+
[5, 6, 7, 8],
227+
[9, 10, 11, 12]
228+
]
229+
print(spiralOrder(matrix)) # Output: [1, 2, 3, 4, 8, 12, 11, 10, 9, 5, 6, 7]
230+
231+
```
232+
233+
### Complexity Analysis
234+
#### Time Complexity: O(m * n)
235+
>Reason: We visit every element in the matrix exactly once.
236+
237+
**Space Complexity:** O(1)
238+
>Reason: We only use a fixed amount of extra space, regardless of the input size.
239+
### References
240+
**LeetCode Problem:** Spiral Matrix
241+
242+

0 commit comments

Comments
 (0)