|
| 1 | +--- |
| 2 | +id: Maximal-Rectangle |
| 3 | +title: Maximal Rectangle |
| 4 | +sidebar_label: Maximal Rectangle |
| 5 | +tags: |
| 6 | + - algorithms |
| 7 | + - dynamic programming |
| 8 | + - stack |
| 9 | + - matrix |
| 10 | + - binary matrix |
| 11 | + - rectangle |
| 12 | +--- |
| 13 | + |
| 14 | +## Problem Description |
| 15 | + |
| 16 | +| Problem Statement | Solution Link | LeetCode Profile | |
| 17 | +| :------------------------------------------------------ | :------------------------------------------------------------------------- | :------------------------------------------------------ | |
| 18 | +| [Maximal-Rectangle](https://leetcode.com/problems/Maximal-Rectangle/description/) | [Maximal-Rectangle Solution on LeetCode](https://leetcode.com/problems/Maximal-Rectangle/solutions/) | [Nikita Saini](https://leetcode.com/u/Saini_Nikita/) | |
| 19 | + |
| 20 | +### Problem Description |
| 21 | + |
| 22 | +Given a `rows x cols` binary matrix filled with `0's` and `1's`, find the largest rectangle containing only `1's` and return its area. |
| 23 | + |
| 24 | +### Examples |
| 25 | + |
| 26 | +#### Example 1: |
| 27 | +**Input:** `matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]` |
| 28 | +**Output:** `6` |
| 29 | +**Explanation:** `The maximal rectangle is shown in the above picture.` |
| 30 | + |
| 31 | +#### Example 2: |
| 32 | +**Input:** `matrix = [["0"]]` |
| 33 | +**Output:** `0` |
| 34 | + |
| 35 | + |
| 36 | +#### Example 3: |
| 37 | +**Input:** `matrix = [["1"]]` |
| 38 | +**Output:** `1` |
| 39 | + |
| 40 | + |
| 41 | +### Constraints |
| 42 | + |
| 43 | +- `rows == matrix.length` |
| 44 | +- `cols == matrix[i].length` |
| 45 | +- `1 <= rows, cols <= 200` |
| 46 | +- `matrix[i][j]` is `'0'` or `'1'`. |
| 47 | + |
| 48 | +## Approach |
| 49 | + |
| 50 | +1. **Transform the Matrix into Histograms**: For each row in the matrix, treat each column as the height of a histogram bar. |
| 51 | +2. **Use Histogram Technique**: Apply the largest rectangle in histogram technique for each row. |
| 52 | +3. **Dynamic Update**: Update the heights of the histogram bars dynamically while iterating over rows. |
| 53 | + |
| 54 | +### Step-by-Step Algorithm |
| 55 | + |
| 56 | +1. **Initialization**: |
| 57 | + - Create a list `heights` of zeros with a length equal to the number of columns in the matrix. |
| 58 | + |
| 59 | +2. **Iterate over Rows**: |
| 60 | + - For each row, update the `heights` where: |
| 61 | + - If `matrix[i][j] == '1'`, increment `heights[j]` by 1. |
| 62 | + - If `matrix[i][j] == '0'`, reset `heights[j]` to 0. |
| 63 | + |
| 64 | +3. **Calculate Maximum Rectangle**: |
| 65 | + - For each updated `heights` array, use a stack to find the maximum rectangle area in the histogram. |
| 66 | + |
| 67 | +### Python Solution |
| 68 | + |
| 69 | +```python |
| 70 | +def maximalRectangle(matrix): |
| 71 | + if not matrix: |
| 72 | + return 0 |
| 73 | + max_area = 0 |
| 74 | + heights = [0] * len(matrix[0]) |
| 75 | + |
| 76 | + for row in matrix: |
| 77 | + for i in range(len(row)): |
| 78 | + if row[i] == '1': |
| 79 | + heights[i] += 1 |
| 80 | + else: |
| 81 | + heights[i] = 0 |
| 82 | + |
| 83 | + max_area = max(max_area, largestRectangleArea(heights)) |
| 84 | + |
| 85 | + return max_area |
| 86 | + |
| 87 | +def largestRectangleArea(heights): |
| 88 | + stack = [] |
| 89 | + max_area = 0 |
| 90 | + heights.append(0) |
| 91 | + |
| 92 | + for i in range(len(heights)): |
| 93 | + while stack and heights[i] < heights[stack[-1]]: |
| 94 | + h = heights[stack.pop()] |
| 95 | + w = i if not stack else i - stack[-1] - 1 |
| 96 | + max_area = max(max_area, h * w) |
| 97 | + stack.append(i) |
| 98 | + |
| 99 | + heights.pop() |
| 100 | + return max_area |
| 101 | +``` |
| 102 | + |
| 103 | +### Java Solution |
| 104 | +```java |
| 105 | +import java.util.Stack; |
| 106 | + |
| 107 | +class Solution { |
| 108 | + public int maximalRectangle(char[][] matrix) { |
| 109 | + if (matrix.length == 0) return 0; |
| 110 | + int maxArea = 0; |
| 111 | + int[] heights = new int[matrix[0].length]; |
| 112 | + |
| 113 | + for (char[] row : matrix) { |
| 114 | + for (int i = 0; i < row.length; i++) { |
| 115 | + heights[i] = row[i] == '1' ? heights[i] + 1 : 0; |
| 116 | + } |
| 117 | + maxArea = Math.max(maxArea, largestRectangleArea(heights)); |
| 118 | + } |
| 119 | + |
| 120 | + return maxArea; |
| 121 | + } |
| 122 | + |
| 123 | + private int largestRectangleArea(int[] heights) { |
| 124 | + Stack<Integer> stack = new Stack<>(); |
| 125 | + int maxArea = 0; |
| 126 | + int[] h = new int[heights.length + 1]; |
| 127 | + System.arraycopy(heights, 0, h, 0, heights.length); |
| 128 | + |
| 129 | + for (int i = 0; i < h.length; i++) { |
| 130 | + while (!stack.isEmpty() && h[i] < h[stack.peek()]) { |
| 131 | + int height = h[stack.pop()]; |
| 132 | + int width = stack.isEmpty() ? i : i - stack.peek() - 1; |
| 133 | + maxArea = Math.max(maxArea, height * width); |
| 134 | + } |
| 135 | + stack.push(i); |
| 136 | + } |
| 137 | + |
| 138 | + return maxArea; |
| 139 | + } |
| 140 | +} |
| 141 | +``` |
| 142 | + |
| 143 | +### C++ Solution |
| 144 | +```cpp |
| 145 | +#include <vector> |
| 146 | +#include <stack> |
| 147 | +#include <algorithm> |
| 148 | + |
| 149 | +class Solution { |
| 150 | +public: |
| 151 | + int maximalRectangle(std::vector<std::vector<char>>& matrix) { |
| 152 | + if (matrix.empty()) return 0; |
| 153 | + int maxArea = 0; |
| 154 | + std::vector<int> heights(matrix[0].size(), 0); |
| 155 | + |
| 156 | + for (const auto& row : matrix) { |
| 157 | + for (size_t i = 0; i < row.size(); ++i) { |
| 158 | + heights[i] = row[i] == '1' ? heights[i] + 1 : 0; |
| 159 | + } |
| 160 | + maxArea = std::max(maxArea, largestRectangleArea(heights)); |
| 161 | + } |
| 162 | + |
| 163 | + return maxArea; |
| 164 | + } |
| 165 | + |
| 166 | +private: |
| 167 | + int largestRectangleArea(const std::vector<int>& heights) { |
| 168 | + std::stack<int> stack; |
| 169 | + int maxArea = 0; |
| 170 | + std::vector<int> h = heights; |
| 171 | + h.push_back(0); |
| 172 | + |
| 173 | + for (size_t i = 0; i < h.size(); ++i) { |
| 174 | + while (!stack.empty() && h[i] < h[stack.top()]) { |
| 175 | + int height = h[stack.top()]; |
| 176 | + stack.pop(); |
| 177 | + int width = stack.empty() ? i : i - stack.top() - 1; |
| 178 | + maxArea = std::max(maxArea, height * width); |
| 179 | + } |
| 180 | + stack.push(i); |
| 181 | + } |
| 182 | + |
| 183 | + return maxArea; |
| 184 | + } |
| 185 | +}; |
| 186 | +``` |
| 187 | +
|
| 188 | +### C Solution |
| 189 | +```c |
| 190 | +#include <stdio.h> |
| 191 | +#include <stdlib.h> |
| 192 | +#include <string.h> |
| 193 | +
|
| 194 | +int maximalRectangle(char** matrix, int matrixSize, int* matrixColSize) { |
| 195 | + if (matrixSize == 0) return 0; |
| 196 | + int maxArea = 0; |
| 197 | + int heights[*matrixColSize]; |
| 198 | + memset(heights, 0, sizeof(heights)); |
| 199 | + |
| 200 | + for (int i = 0; i < matrixSize; i++) { |
| 201 | + for (int j = 0; j < *matrixColSize; j++) { |
| 202 | + heights[j] = matrix[i][j] == '1' ? heights[j] + 1 : 0; |
| 203 | + } |
| 204 | + maxArea = fmax(maxArea, largestRectangleArea(heights, *matrixColSize)); |
| 205 | + } |
| 206 | + |
| 207 | + return maxArea; |
| 208 | +} |
| 209 | +
|
| 210 | +int largestRectangleArea(int* heights, int size) { |
| 211 | + int maxArea = 0; |
| 212 | + int* stack = (int*)malloc((size + 1) * sizeof(int)); |
| 213 | + int top = -1; |
| 214 | + heights[size] = 0; |
| 215 | + |
| 216 | + for (int i = 0; i <= size; i++) { |
| 217 | + while (top != -1 && heights[i] < heights[stack[top]]) { |
| 218 | + int height = heights[stack[top--]]; |
| 219 | + int width = top == -1 ? i : i - stack[top] - 1; |
| 220 | + maxArea = fmax(maxArea, height * width); |
| 221 | + } |
| 222 | + stack[++top] = i; |
| 223 | + } |
| 224 | + |
| 225 | + free(stack); |
| 226 | + return maxArea; |
| 227 | +} |
| 228 | +``` |
| 229 | + |
| 230 | +### JavaScript Solution |
| 231 | +```js |
| 232 | +var maximalRectangle = function(matrix) { |
| 233 | + if (matrix.length === 0) return 0; |
| 234 | + let maxArea = 0; |
| 235 | + let heights = new Array(matrix[0].length).fill(0); |
| 236 | + |
| 237 | + for (let row of matrix) { |
| 238 | + for (let i = 0; i < row.length; i++) { |
| 239 | + heights[i] = row[i] === '1' ? heights[i] + 1 : 0; |
| 240 | + } |
| 241 | + maxArea = Math.max(maxArea, largestRectangleArea(heights)); |
| 242 | + } |
| 243 | + |
| 244 | + return maxArea; |
| 245 | +}; |
| 246 | + |
| 247 | +var largestRectangleArea = function(heights) { |
| 248 | + let stack = []; |
| 249 | + let maxArea = 0; |
| 250 | + heights.push(0); |
| 251 | + |
| 252 | + for (let i = 0; i < heights.length; i++) { |
| 253 | + while (stack.length && heights[i] < heights[stack[stack.length - 1]]) { |
| 254 | + let height = heights[stack.pop()]; |
| 255 | + let width = stack.length === 0 ? i : i - stack[stack.length - 1] - 1; |
| 256 | + maxArea = Math.max(maxArea, height * width); |
| 257 | + } |
| 258 | + stack.push(i); |
| 259 | + } |
| 260 | + |
| 261 | + heights.pop(); |
| 262 | + return maxArea; |
| 263 | +}; |
| 264 | +``` |
| 265 | + |
| 266 | +### Conclusion |
| 267 | +This problem combines concepts from dynamic programming and stack-based approaches to efficiently calculate the largest rectangle containing only 1's in a binary matrix. By converting the problem to a series of histogram problems and using an optimized approach to find the largest rectangle in a histogram, we achieve a time-efficient solution. |
| 268 | + |
| 269 | + |
0 commit comments