@@ -39,8 +39,8 @@ The algorithm is a simple way to find the *greatest common divisor* (GCD) of two
39
39
[ import:12-25, lang="julia"] ( code/julia/euclidean.jl )
40
40
{% sample lang="nim" %}
41
41
[ import:13-24, lang="nim"] ( code/nim/euclid_algorithm.nim )
42
- {% sample lang="x64" %}
43
- [ import:43-78, lang="x64"] ( code/x64/euclidean_example.s )
42
+ {% sample lang="asm- x64" %}
43
+ [ import:43-78, lang="asm- x64"] ( code/asm- x64/euclidean_example.s )
44
44
{% sample lang="f90" %}
45
45
[ import:1-19, lang="Fortran"] ( code/fortran/euclidean.f90 )
46
46
{% endmethod %}
@@ -88,8 +88,8 @@ Modern implementations, though, often use the modulus operator (%) like so
88
88
[ import:1-10, lang="julia"] ( code/julia/euclidean.jl )
89
89
{% sample lang="nim" %}
90
90
[ import:1-11, lang="nim"] ( code/nim/euclid_algorithm.nim )
91
- {% sample lang="x64" %}
92
- [ import:8-41, lang="x64"] ( code/x64/euclidean_example.s )
91
+ {% sample lang="asm- x64" %}
92
+ [ import:8-41, lang="asm- x64"] ( code/asm- x64/euclidean_example.s )
93
93
{% sample lang="f90" %}
94
94
[ import:21-34, lang="Fortran"] ( code/fortran/euclidean.f90 )
95
95
{% endmethod %}
@@ -142,8 +142,8 @@ The Euclidean Algorithm is truly fundamental to many other algorithms throughout
142
142
[ import, lang="julia"] ( code/julia/euclidean.jl )
143
143
{% sample lang="nim" %}
144
144
[ import, lang="nim" %] ( code/nim/euclid_algorithm.nim )
145
- {% sample lang="x64" %}
146
- [ import, lang="x64"] ( code/x64/euclidean_example.s )
145
+ {% sample lang="asm- x64" %}
146
+ [ import, lang="asm- x64"] ( code/asm- x64/euclidean_example.s )
147
147
{% sample lang="f90" %}
148
148
[ import, lang="Fortran"] ( code/fortran/euclidean.f90 )
149
149
{% endmethod %}
0 commit comments