@@ -17,6 +17,8 @@ The algorithm is a simple way to find the *greatest common divisor* (GCD) of two
17
17
[ import:3-16, lang="java"] ( code/java/EuclideanAlgo.java )
18
18
{% sample lang="js" %}
19
19
[ import:15-29, lang="javascript"] ( code/javascript/euclidean_example.js )
20
+ {% sample lang="lisp" %}
21
+ [ import:3-12, lang="lisp"] ( code/lisp/euclidean_algorithm.lisp )
20
22
{% sample lang="py" %}
21
23
[ import:11-22, lang="python"] ( code/python/euclidean_example.py )
22
24
{% sample lang="haskell" %}
@@ -60,6 +62,8 @@ Modern implementations, though, often use the modulus operator (%) like so
60
62
[ import:18-26, lang="java"] ( code/java/EuclideanAlgo.java )
61
63
{% sample lang="js" %}
62
64
[ import:1-13, lang="javascript"] ( code/javascript/euclidean_example.js )
65
+ {% sample lang="lisp" %}
66
+ [ import:13-17, lang="lisp"] ( code/lisp/euclidean_algorithm.lisp )
63
67
{% sample lang="py" %}
64
68
[ import:1-9, lang="python"] ( code/python/euclidean_example.py )
65
69
{% sample lang="haskell" %}
@@ -108,6 +112,8 @@ The Euclidean Algorithm is truly fundamental to many other algorithms throughout
108
112
[ import, lang="java"] ( code/java/EuclideanAlgo.java )
109
113
{% sample lang="js" %}
110
114
[ import, lang="javascript"] ( code/javascript/euclidean_example.js )
115
+ {% sample lang="lisp" %}
116
+ [ import, lang="lisp"] ( code/lisp/euclidean_algorithm.lisp )
111
117
{% sample lang="py" %}
112
118
[ import, lang="python"] ( code/python/euclidean_example.py )
113
119
{% sample lang="haskell" %}
0 commit comments