@@ -15,8 +15,8 @@ The algorithm is a simple way to find the *greatest common divisor* (GCD) of two
15
15
[ import:20-33, lang="c_cpp"] ( code/c++/euclidean.cpp )
16
16
{% sample lang="js" %}
17
17
[ import:15-29, lang="javascript"] ( code/javascript/euclidean_example.js )
18
- {% sample lang="py2 " %}
19
- [ import:14-25 , lang="python"] ( code/python2 /euclidean_example.py )
18
+ {% sample lang="py " %}
19
+ [ import:17-28 , lang="python"] ( code/python /euclidean_example.py )
20
20
{% sample lang="haskell" %}
21
21
[ import:3-11, lang="haskell"] ( code/haskell/euclidean_example.hs )
22
22
{% sample lang="rs" %}
@@ -46,8 +46,8 @@ Modern implementations, though, often use the modulus operator (%) like so
46
46
[ import:7-17, lang="c_cpp"] ( code/c++/euclidean.cpp )
47
47
{% sample lang="js" %}
48
48
[ import:1-13, lang="javascript"] ( code/javascript/euclidean_example.js )
49
- {% sample lang="py2 " %}
50
- [ import:1-12 , lang="python"] ( code/python2 /euclidean_example.py )
49
+ {% sample lang="py " %}
50
+ [ import:4-15 , lang="python"] ( code/python /euclidean_example.py )
51
51
{% sample lang="haskell" %}
52
52
[ import:13-24, lang="haskell"] ( code/haskell/euclidean_example.hs )
53
53
{% sample lang="rs" %}
@@ -89,7 +89,7 @@ Program.cs
89
89
[ import, lang="javascript"] ( code/javascript/euclidean_example.js )
90
90
{% sample lang="py2" %}
91
91
### Python
92
- [ import, lang="python"] ( code/python2 /euclidean_example.py )
92
+ [ import, lang="python"] ( code/python /euclidean_example.py )
93
93
{% sample lang="haskell" %}
94
94
### Haskell
95
95
[ import, lang="haskell"] ( code/haskell/euclidean_example.hs )
0 commit comments