|
| 1 | +import java.io.FileWriter; |
| 2 | +import java.io.IOException; |
| 3 | +import java.util.Random; |
| 4 | + |
| 5 | +public class Barnsley { |
| 6 | + |
| 7 | + private static class Point { |
| 8 | + public double x, y, z; |
| 9 | + |
| 10 | + public Point(double x, double y, double z) { |
| 11 | + this.x = x; |
| 12 | + this.y = y; |
| 13 | + this.z = z; |
| 14 | + } |
| 15 | + |
| 16 | + public Point(double[] coordinates) { |
| 17 | + this.x = coordinates[0]; |
| 18 | + this.y = coordinates[1]; |
| 19 | + this.z = coordinates[2]; |
| 20 | + } |
| 21 | + |
| 22 | + public Point matrixMultiplication(double[][] matrix) { |
| 23 | + double[] results = new double[3]; |
| 24 | + for (int i = 0; i < 3; i++) { |
| 25 | + results[i] = matrix[i][0] * x + matrix[i][1] * y + matrix[i][2] * z; |
| 26 | + } |
| 27 | + return new Point(results); |
| 28 | + } |
| 29 | + } |
| 30 | + |
| 31 | + // This is a function that reads in the Hutchinson operator and corresponding |
| 32 | + // probabilities and outputs a randomly selected transform |
| 33 | + // This works by choosing a random number and then iterating through all |
| 34 | + // probabilities until it finds an appropriate bin |
| 35 | + public static double[][] selectArray(double[][][] hutchinsonOp, double[] probabilities) { |
| 36 | + Random rng = new Random(); |
| 37 | + // Random number to be binned |
| 38 | + double rand = rng.nextDouble(); |
| 39 | + |
| 40 | + // This checks to see if a random number is in a bin, if not, that |
| 41 | + // probability is subtracted from the random number and we check the |
| 42 | + // next bin in the list |
| 43 | + for (int i = 0; i < probabilities.length; i++) { |
| 44 | + if (rand < probabilities[i]) |
| 45 | + return hutchinsonOp[i]; |
| 46 | + rand -= probabilities[i]; |
| 47 | + } |
| 48 | + // This return will never be reached, as the loop above ensures that at some point rand will be smaller |
| 49 | + // than a probability. However, Java does not know this and thus this return is needed for compilation. |
| 50 | + return null; |
| 51 | + } |
| 52 | + |
| 53 | + // This is a general function to simulate a chaos game |
| 54 | + // n is the number of iterations |
| 55 | + // initialLocation is the starting point of the chaos game |
| 56 | + // hutchinsonOp is the set of functions to iterate through |
| 57 | + // probabilities is the set of probabilities corresponding to the likelihood |
| 58 | + // of choosing their corresponding function in hutchinsonOp |
| 59 | + public static Point[] chaosGame(int n, Point initialLocation, double[][][] hutchinsonOp, double[] probabilities) { |
| 60 | + // Initializing output points |
| 61 | + Point[] outputPoints = new Point[n]; |
| 62 | + Point point = initialLocation; |
| 63 | + |
| 64 | + for (int i = 0; i < n; i++) { |
| 65 | + outputPoints[i] = point; |
| 66 | + point = point.matrixMultiplication(selectArray(hutchinsonOp, probabilities)); |
| 67 | + } |
| 68 | + |
| 69 | + return outputPoints; |
| 70 | + } |
| 71 | + |
| 72 | + public static void main(String[] args) { |
| 73 | + double[][][] barnsleyHutchinson = { |
| 74 | + {{0.0, 0.0, 0.0}, |
| 75 | + {0.0, 0.16, 0.0}, |
| 76 | + {0.0, 0.0, 1.0}}, |
| 77 | + {{0.85, 0.04, 0.0}, |
| 78 | + {-0.04, 0.85, 1.60}, |
| 79 | + {0.0, 0.0, 1.0}}, |
| 80 | + {{0.20, -0.26, 0.0}, |
| 81 | + {0.23, 0.22, 1.60}, |
| 82 | + {0.0, 0.0, 1.0}}, |
| 83 | + {{-0.15, 0.28, 0.0}, |
| 84 | + {0.26, 0.24, 0.44}, |
| 85 | + {0.0, 0.0, 1.0}} |
| 86 | + }; |
| 87 | + double[] barnsleyProbabilities = new double[]{0.01, 0.85, 0.07, 0.07}; |
| 88 | + Point[] outputPoints = chaosGame(10000, new Point(0.0, 0.0, 1.0), barnsleyHutchinson, barnsleyProbabilities); |
| 89 | + try (FileWriter fw = new FileWriter("barnsley.dat")) { |
| 90 | + for (Point p : outputPoints) { |
| 91 | + fw.write(p.x + "\t" + p.y + "\n"); |
| 92 | + } |
| 93 | + } catch (IOException e) { |
| 94 | + e.printStackTrace(); |
| 95 | + } |
| 96 | + } |
| 97 | + |
| 98 | +} |
0 commit comments