You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: index.html
+20-21Lines changed: 20 additions & 21 deletions
Original file line number
Diff line number
Diff line change
@@ -103,62 +103,61 @@ <h3 class="mb-0">Postdocs and PhD students</h3>
103
103
<divclass="resume-section-content">
104
104
<h2class="mb-5">Recent Publications</h2>
105
105
<!-- PUBS -->
106
-
<h3class="mb-0">2023</h3><ul><li>Leonardo Pellegrina <emph><ahref="https://doi.org/10.1145/3580305.3599325">Efficient Centrality Maximization with Rademacher Averages.</a></emph> KDD</li>
107
-
<li>Andrea Tonon, Fabio Vandin <emph><ahref="https://doi.org/10.1007/s10115-022-01800-7">caSPiTa: mining statistically significant paths in time series data from an unknown network.</a></emph> Knowl. Inf. Syst.</li>
106
+
<h3class="mb-0">2023</h3><ul><li>Andrea Tonon, Fabio Vandin <emph><ahref="https://doi.org/10.1007/s10115-022-01800-7">caSPiTa: mining statistically significant paths in time series data from an unknown network.</a></emph> Knowl. Inf. Syst.</li>
108
107
<li>Dario Simionato, Fabio Vandin <emph><ahref="https://doi.org/10.24963/ijcai.2023/726">Bounding the Family-Wise Error Rate in Local Causal Discovery Using Rademacher Averages (Extended Abstract).</a></emph> IJCAI</li>
109
108
<li>Enrico Dandolo, Andrea Pietracaprina, Geppino Pucci <emph><ahref="https://doi.org/10.1007/978-3-031-39698-4_32">Distributed k-Means with Outliers in General Metrics.</a></emph> Euro-Par</li>
109
+
<li>Leonardo Pellegrina <emph><ahref="https://doi.org/10.1145/3580305.3599325">Efficient Centrality Maximization with Rademacher Averages.</a></emph> KDD</li>
110
110
<li>Matteo Ceccarello, Andrea Pietracaprina, Geppino Pucci, Federico Soldà <emph><ahref="https://doi.org/10.1186/s40537-023-00717-4">Scalable and space-efficient Robust Matroid Center algorithms.</a></emph> J. Big Data</li>
111
111
<li>Matteo Ceccarello, Anton Dignös, Johann Gamper, Christina Khnaisser <emph><ahref="https://doi.org/10.1145/3603719.3603732">Indexing Temporal Relations for Range-Duration Queries.</a></emph> SSDBM</li>
112
112
<li>Paolo Pellizzoni, Andrea Pietracaprina, Geppino Pucci <emph><ahref="https://doi.org/10.1007/978-3-031-38906-1_41">Fully Dynamic Clustering and Diversity Maximization in Doubling Metrics.</a></emph> WADS</li>
113
113
<li>Paolo Pellizzoni, Fabio Vandin <emph><ahref="https://doi.org/10.1109/ICDE55515.2023.00190">VC-dimension and Rademacher Averages of Subgraphs, with Applications to Graph Mining.</a></emph> ICDE</li>
114
-
<li>Shiyuan Deng, Francesco Silvestri, Yufei Tao <emph><ahref="https://doi.org/10.4230/LIPIcs.ICDT.2023.4">Enumerating Subgraphs of Constant Sizes in External Memory.</a></emph> ICDT</li></ul>
<li>A. Guiotto, G. Bortolami, A. Ciniglio, F. Spolaor, G. Guarneri, A. Avogaro, F. Cibin, F. Silvestri, Z. Sawacha. <emph><ahref="https://www.sciencedirect.com/science/article/abs/pii/S0966636222005537">Machine learning approach to diabetic foot risk classification with biomechanics data</a></emph> Gait & Posture</li>
114
+
<li>Shiyuan Deng, Francesco Silvestri , Yufei Tao <emph><ahref="https://doi.org/10.4230/LIPIcs.ICDT.2023.4">Enumerating Subgraphs of Constant Sizes in External Memory.</a></emph> ICDT</li></ul>
115
+
<h3class="mb-0">2022</h3><ul><li>A. Guiotto, G. Bortolami, A. Ciniglio, F. Spolaor, G. Guarneri, A. Avogaro, F. Cibin, F. Silvestri, Z. Sawacha. <emph><ahref="https://www.sciencedirect.com/science/article/abs/pii/S0966636222005537">Machine learning approach to diabetic foot risk classification with biomechanics data</a></emph> Gait & Posture</li>
117
116
<li>Adam Charane, Matteo Ceccarello, Anton Dignös, Johann Gamper <emph><ahref="https://doi.org/10.1007/978-3-031-09850-5_17">Efficient Computation of All-Window Length Correlations.</a></emph> DB&IS</li>
118
117
<li>Andrea Tonon, Fabio Vandin <emph><ahref="https://doi.org/10.1007/s10115-022-01689-2">gRosSo: mining statistically robust patterns from a sequence of datasets.</a></emph> Knowl. Inf. Syst.</li>
119
118
<li>Dario Simionato, Fabio Vandin <emph><ahref="https://doi.org/10.1007/978-3-031-26419-1_16">Bounding the Family-Wise Error Rate in Local Causal Discovery Using Rademacher Averages.</a></emph> ECML/PKDD</li>
120
-
<li>Davide Buffelli, Fabio Vandin <emph><ahref="https://doi.org/10.1109/IJCNN55064.2022.9892010">Graph Representation Learning for Multi-Task Settings: a Meta-Learning Approach.</a></emph> IJCNN</li>
121
119
<li>Davide Buffelli, Fabio Vandin <emph><ahref="https://doi.org/10.3390/data7010010">The Impact of Global Structural Information in Graph Neural Networks Applications.</a></emph> Data</li>
120
+
<li>Davide Buffelli, Fabio Vandin <emph><ahref="https://doi.org/10.1109/IJCNN55064.2022.9892010">Graph Representation Learning for Multi-Task Settings: a Meta-Learning Approach.</a></emph> IJCNN</li>
122
121
<li>Davide Buffelli, Pietro Lió, Fabio Vandin <emph><ahref="https://papers.nips.cc/paper_files/paper/2022/hash/ceeb3fa5be458f08fbb12a5bb783aac8-Abstract-Conference.html">SizeShiftReg: a Regularization Method for Improving Size-Generalization in Graph Neural Networks</a></emph> NeurIPS</li>
123
122
<li>Davide Buffelli, Pietro Lió, Fabio Vandin <emph><ahref="http://papers.nips.cc/paper_files/paper/2022/hash/ceeb3fa5be458f08fbb12a5bb783aac8-Abstract-Conference.html">SizeShiftReg: a Regularization Method for Improving Size-Generalization in Graph Neural Networks.</a></emph> NeurIPS</li>
124
123
<li>Diego Santoro, Ilie Sarpe <emph><ahref="https://doi.org/10.1145/3485447.3512204">ONBRA: Rigorous Estimation of the Temporal Betweenness Centrality in Temporal Networks.</a></emph> WWW</li>
125
124
<li>Diego Santoro, Leonardo Pellegrina, Matteo Comin, Fabio Vandin <emph><ahref="https://doi.org/10.1093/bioinformatics/btac180">SPRISS: approximating frequent k-mers by sampling reads, and applications.</a></emph> Bioinform.</li>
<li>Johann Gamper, Matteo Ceccarello, Anton Dignös <emph><ahref="https://doi.org/10.1007/978-3-031-15740-0_5">What's New in Temporal Databases?</a></emph> ADBIS</li>
127
127
<li>Leonardo Pellegrina, Cyrus Cousins, Fabio Vandin, Matteo Riondato <emph><ahref="https://doi.org/10.1145/3532187">MCRapper: Monte-Carlo Rademacher Averages for Poset Families and Approximate Pattern Mining.</a></emph> ACM Trans. Knowl. Discov. Data</li>
128
128
<li>Leonardo Pellegrina, Fabio Vandin <emph><ahref="https://pubmed.ncbi.nlm.nih.gov/36124798/">Discovering significant evolutionary trajectories in cancer phylogenies</a></emph> Bioinformatics</li>
<li>Martin Aumüller, Sariel Har-Peled, Sepideh Mahabadi, Rasmus Pagh, Francesco Silvestri <emph><ahref="https://doi.org/10.1145/3502867">Sampling a Near Neighbor in High Dimensions - Who is the Fairest of Them All?</a></emph>ACM Trans. Database Syst.</li>
131
-
<li>Martin Aumüller, Sariel Har-Peled, Sepideh Mahabadi, Rasmus Pagh, Francesco Silvestri <emph><ahref="https://doi.org/10.1145/3543667">Sampling near neighbors in search for fairness.</a></emph>Commun. ACM</li>
<li>Martin Aumüller, Sariel Har-Peled, Sepideh Mahabadi, Rasmus Pagh, Francesco Silvestri <emph><ahref="https://doi.org/10.1145/3543667">Sampling near neighbors in search for fairness.</a></emph>Commun. ACM</li>
131
+
<li>Martin Aumüller, Sariel Har-Peled, Sepideh Mahabadi, Rasmus Pagh, Francesco Silvestri <emph><ahref="https://doi.org/10.1145/3502867">Sampling a Near Neighbor in High Dimensions - Who is the Fairest of Them All?</a></emph>ACM Trans. Database Syst.</li>
132
132
<li>Matteo Ceccarello, Johann Gamper <emph><ahref="https://www.vldb.org/pvldb/vol15/p3841-ceccarello.pdf">Fast and Scalable Mining of Time Series Motifs with Probabilistic Guarantees.</a></emph> Proc. VLDB Endow.</li>
133
-
<li>Paolo Pellizzoni, Andrea Pietracaprina, Geppino Pucci <emph><ahref="https://doi.org/10.1007/s41060-022-00318-z">Adaptive k-center and diameter estimation in sliding windows.</a></emph> Int. J. Data Sci. Anal.</li>
134
133
<li>Paolo Pellizzoni, Andrea Pietracaprina, Geppino Pucci <emph><ahref="https://doi.org/10.3390/a15020052">k-Center Clustering with Outliers in Sliding Windows.</a></emph> Algorithms</li>
135
-
<li>Paolo Sylos Labini, Massimo Bernaschi, Werner Nutt, Francesco Silvestri, Flavio Vella <emph><ahref="https://doi.org/10.1109/IA356718.2022.00009">Blocking Sparse Matrices to Leverage Dense-Specific Multiplication.</a></emph> IA3@SC</li></ul>
134
+
<li>Paolo Pellizzoni, Andrea Pietracaprina, Geppino Pucci <emph><ahref="https://doi.org/10.1007/s41060-022-00318-z">Adaptive k-center and diameter estimation in sliding windows.</a></emph> Int. J. Data Sci. Anal.</li>
135
+
<li>Paolo Sylos Labini, Massimo Bernaschi, Werner Nutt, Francesco Silvestri , Flavio Vella <emph><ahref="https://doi.org/10.1109/IA356718.2022.00009">Blocking Sparse Matrices to Leverage Dense-Specific Multiplication.</a></emph> IA3@SC</li></ul>
136
136
<h3class="mb-0">2021</h3><ul><li>Andrea Tonon, Fabio Vandin <emph><ahref="https://doi.org/10.1109/ICDM51629.2021.00075">CASPITA: Mining Statistically Significant Paths in Time Series Data from an Unknown Network.</a></emph> ICDM</li>
137
137
<li>Davide Buffelli, Fabio Vandin <emph><ahref="https://ieeexplore.ieee.org/document/9382331">Attention-Based Deep Learning Framework for Human Activity Recognition With User Adaptation</a></emph> IEEE Sensors</li>
138
138
<li>Diego Santoro, Leonardo Pellegrina, Fabio Vandin <emph><ahref="https://arxiv.org/abs/2101.07117">SPRISS: Approximating Frequent k-mers by Sampling Reads, and Applications</a></emph> RECOMB</li>
139
-
<li>Elia Costa, Francesco Silvestri <emph><ahref="https://doi.org/10.4230/OASIcs.ATMOS.2021.5">On the Bike Spreading Problem.</a></emph> ATMOS</li>
139
+
<li>Elia Costa, Francesco Silvestri <emph><ahref="https://doi.org/10.4230/OASIcs.ATMOS.2021.5">On the Bike Spreading Problem.</a></emph> ATMOS</li>
140
140
<li>Federico Altieri, Andrea Pietracaprina, Geppino Pucci, Fabio Vandin <emph><ahref="https://doi.org/10.1137/1.9781611976700.73">Scalable Distributed Approximation of Internal Measures for Clustering Evaluation.</a></emph> SDM</li>
141
-
<li>Ilie Sarpe, Fabio Vandin <emph><ahref="https://doi.org/10.1137/1.9781611976700.17">PRESTO: Simple and Scalable Sampling Techniques for the Rigorous Approximation of Temporal Motif Counts.</a></emph> SDM</li>
142
141
<li>Ilie Sarpe, Fabio Vandin <emph><ahref="https://doi.org/10.1145/3459637.3482459">odeN: Simultaneous Approximation of Multiple Motif Counts in Large Temporal Networks.</a></emph> CIKM</li>
143
-
<li>Martin Aumüller, Matteo Ceccarello <emph><ahref="https://doi.org/10.1016/j.is.2021.101807">The role of local dimensionality measures in benchmarking nearest neighbor search.</a></emph> Inf. Syst.</li>
144
-
<li>Martin Aumüller, Sariel Har-Peled, Sepideh Mahabadi, Rasmus Pagh, Francesco Silvestri <emph><ahref="https://doi.org/10.1145/3471485.3471496">Fair near neighbor search via sampling.</a></emph> SIGMOD Rec.</li>
142
+
<li>Ilie Sarpe, Fabio Vandin <emph><ahref="https://doi.org/10.1137/1.9781611976700.17">PRESTO: Simple and Scalable Sampling Techniques for the Rigorous Approximation of Temporal Motif Counts.</a></emph> SDM</li>
143
+
<li>Martin Aumüller , Matteo Ceccarello <emph><ahref="https://doi.org/10.1016/j.is.2021.101807">The role of local dimensionality measures in benchmarking nearest neighbor search.</a></emph> Inf. Syst.</li>
144
+
<li>Martin Aumüller , Sariel Har-Peled, Sepideh Mahabadi, Rasmus Pagh, Francesco Silvestri <emph><ahref="https://doi.org/10.1145/3471485.3471496">Fair near neighbor search via sampling.</a></emph> SIGMOD Rec.</li>
145
145
<li>Matteo Comin, Barbara Di Camillo, Cinzia Pizzi, Fabio Vandin <emph><ahref="https://doi.org/10.1093/bib/bbaa121">Comparison of microbiome samples: methods and computational challenges.</a></emph> Briefings Bioinform.</li>
146
-
<li>Rezaul Chowdhury, Francesco Silvestri, Flavio Vella <emph><ahref="https://doi.org/10.1007/978-3-030-85665-6_22">Algorithm Design for Tensor Units.</a></emph> Euro-Par</li></ul>
146
+
<li>Rezaul Chowdhury, Francesco Silvestri, Flavio Vella <emph><ahref="https://doi.org/10.1007/978-3-030-85665-6_22">Algorithm Design for Tensor Units.</a></emph> Euro-Par</li></ul>
147
147
<h3class="mb-0">2020</h3><ul><li>Andrea Tonon, Fabio Vandin <emph><ahref="https://doi.org/10.1109/ICDM50108.2020.00064">GRosSo: Mining Statistically Robust Patterns from a Sequence of Datasets.</a></emph> ICDM</li>
148
148
<li>Diego Santoro, Andrea Tonon, Fabio Vandin <emph><ahref="https://doi.org/10.3390/a13050123">Mining Sequential Patterns with VC-Dimension and Rademacher Complexity.</a></emph> Algorithms</li>
149
149
<li>Leonardo Pellegrina, Cinzia Pizzi, Fabio Vandin <emph><ahref="https://doi.org/10.1089/cmb.2019.0314">Fast Approximation of Frequent k-Mers and Applications to Metagenomics.</a></emph> J. Comput. Biol.</li>
150
150
<li>Leonardo Pellegrina, Cyrus Cousins, Fabio Vandin, Matteo Riondato <emph><ahref="https://doi.org/10.1145/3394486.3403267">MCRapper: Monte-Carlo Rademacher Averages for Poset Families and Approximate Pattern Mining.</a></emph> KDD</li>
151
151
<li>Leonardo Pellegrina, Fabio Vandin <emph><ahref="https://doi.org/10.1007/s10618-020-00687-8">Efficient mining of the most significant patterns with permutation testing.</a></emph> Data Min. Knowl. Discov.</li>
152
-
<li>Martin Aumüller, Matteo Ceccarello <emph><ahref="https://doi.org/10.1007/978-3-030-60936-8_31">Running Experiments with Confidence and Sanity.</a></emph> SISAP</li>
153
-
<li>Martin Aumüller, Rasmus Pagh, Francesco Silvestri <emph><ahref="https://doi.org/10.1145/3375395.3387648">Fair Near Neighbor Search: Independent Range Sampling in High Dimensions.</a></emph> PODS</li>
152
+
<li>Martin Aumüller, Matteo Ceccarello <emph><ahref="https://doi.org/10.1007/978-3-030-60936-8_31">Running Experiments with Confidence and Sanity.</a></emph> SISAP</li>
153
+
<li>Martin Aumüller, Rasmus Pagh, Francesco Silvestri<emph><ahref="https://doi.org/10.1145/3375395.3387648">Fair Near Neighbor Search: Independent Range Sampling in High Dimensions.</a></emph> PODS</li>
154
154
<li>Matteo Ceccarello, Andrea Pietracaprina, Geppino Pucci <emph><ahref="https://doi.org/10.1145/3402448">A General Coreset-Based Approach to Diversity Maximization under Matroid Constraints.</a></emph> ACM Trans. Knowl. Discov. Data</li>
155
155
<li>Matteo Ceccarello, Andrea Pietracaprina, Geppino Pucci, Eli Upfal <emph><ahref="https://doi.org/10.3390/a13090216">Distributed Graph Diameter Approximation.</a></emph> Algorithms</li>
156
156
<li>Matteo Riondato, Fabio Vandin <emph><ahref="https://doi.org/10.1145/3385653">MiSoSouP: Mining Interesting Subgroups with Sampling and Pseudodimension.</a></emph> ACM Trans. Knowl. Discov. Data</li>
157
157
<li>Paolo Pellizzoni, Andrea Pietracaprina, Geppino Pucci <emph><ahref="https://doi.org/10.1109/DSAA49011.2020.00032">Dimensionality-adaptive k-center in sliding windows.</a></emph> DSAA</li>
158
-
<li>Rezaul Chowdhury, Francesco Silvestri, Flavio Vella <emph><ahref="https://doi.org/10.1145/3350755.3400252">A Computational Model for Tensor Core Units.</a></emph> SPAA</li>
159
-
<li>Thomas D. Ahle, Francesco Silvestri <emph><ahref="https://doi.org/10.1007/978-3-030-60936-8_6">Similarity Search with Tensor Core Units.</a></emph> SISAP</li>
158
+
<li>Rezaul Chowdhury, Francesco Silvestri, Flavio Vella <emph><ahref="https://doi.org/10.1145/3350755.3400252">A Computational Model for Tensor Core Units.</a></emph> SPAA</li>
159
+
<li>Thomas D. Ahle, Francesco Silvestri <emph><ahref="https://doi.org/10.1007/978-3-030-60936-8_6">Similarity Search with Tensor Core Units.</a></emph> SISAP</li>
160
160
<li>Yoo-Ah Kim, D. Wojtowicz, R. Sarto Basso, I. Sason, W. Robinson, D. S. Hochbaum, M. Leiserson, R. Sharan, F. Vandin, T. Przytycka. <emph><ahref="https://pubmed.ncbi.nlm.nih.gov/32471470/">Network-based approaches elucidate differences within APOBEC and clock-like signatures in breast cancer</a></emph> Genome Medicine</li></ul>
0 commit comments