Skip to content

Commit 1a08fe7

Browse files
cxl923ccvictor
authored and
victor
committed
Doc: Added docstring to Groupby mean (pandas-dev#20910)
1 parent 592f67d commit 1a08fe7

File tree

1 file changed

+41
-2
lines changed

1 file changed

+41
-2
lines changed

pandas/core/groupby/groupby.py

Lines changed: 41 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1297,9 +1297,48 @@ def count(self):
12971297
@Appender(_doc_template)
12981298
def mean(self, *args, **kwargs):
12991299
"""
1300-
Compute mean of groups, excluding missing values
1300+
Compute mean of groups, excluding missing values.
13011301
1302-
For multiple groupings, the result index will be a MultiIndex
1302+
Returns
1303+
-------
1304+
pandas.Series or pandas.DataFrame
1305+
1306+
Examples
1307+
--------
1308+
>>> df = pd.DataFrame({'A': [1, 1, 2, 1, 2],
1309+
... 'B': [np.nan, 2, 3, 4, 5],
1310+
... 'C': [1, 2, 1, 1, 2]}, columns=['A', 'B', 'C'])
1311+
1312+
Groupby one column and return the mean of the remaining columns in
1313+
each group.
1314+
1315+
>>> df.groupby('A').mean()
1316+
>>>
1317+
B C
1318+
A
1319+
1 3.0 1.333333
1320+
2 4.0 1.500000
1321+
1322+
Groupby two columns and return the mean of the remaining column.
1323+
1324+
>>> df.groupby(['A', 'B']).mean()
1325+
>>>
1326+
C
1327+
A B
1328+
1 2.0 2
1329+
4.0 1
1330+
2 3.0 1
1331+
5.0 2
1332+
1333+
Groupby one column and return the mean of only particular column in
1334+
the group.
1335+
1336+
>>> df.groupby('A')['B'].mean()
1337+
>>>
1338+
A
1339+
1 3.0
1340+
2 4.0
1341+
Name: B, dtype: float64
13031342
"""
13041343
nv.validate_groupby_func('mean', args, kwargs, ['numeric_only'])
13051344
try:

0 commit comments

Comments
 (0)