@@ -169,12 +169,12 @@ Linear Regression in `Eager` mode:
169
169
#r "nuget: SciSharp.TensorFlow.Redist"
170
170
#r "nuget: NumSharp"
171
171
172
- open System
173
172
open NumSharp
174
173
open Tensorflow
175
- open Tensorflow.Keras
174
+ open type Tensorflow.Binding
175
+ open type Tensorflow.KerasApi
176
176
177
- let tf = Binding. New<tensorflow>()
177
+ let tf = New<tensorflow>()
178
178
tf.enable_eager_execution()
179
179
180
180
// Parameters
@@ -194,7 +194,7 @@ let n_samples = train_X.shape.[0]
194
194
// We can set a fixed init value in order to demo
195
195
let W = tf.Variable(-0.06f,name = "weight")
196
196
let b = tf.Variable(-0.73f, name = "bias")
197
- let optimizer = KerasApi. keras.optimizers.SGD(learning_rate)
197
+ let optimizer = keras.optimizers.SGD(learning_rate)
198
198
199
199
// Run training for the given number of steps.
200
200
for step = 1 to (training_steps + 1) do
@@ -210,7 +210,7 @@ for step = 1 to (training_steps + 1) do
210
210
let gradients = g.gradient(loss,struct (W,b))
211
211
212
212
// Update W and b following gradients.
213
- optimizer.apply_gradients(Binding. zip(gradients, struct (W,b)))
213
+ optimizer.apply_gradients(zip(gradients, struct (W,b)))
214
214
215
215
if (step % display_step) = 0 then
216
216
let pred = W * train_X + b
0 commit comments