You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
/// Greedily selects a subset of bounding boxes in descending order of score.
209
+
/// </summary>
210
+
/// <param name="boxes">
211
+
/// A 4-D float `Tensor` of shape `[batch_size, num_boxes, q, 4]`. If `q`
212
+
/// is 1 then same boxes are used for all classes otherwise, if `q` is equal
213
+
/// to number of classes, class-specific boxes are used.
214
+
/// </param>
215
+
/// <param name="scores">
216
+
/// A 3-D float `Tensor` of shape `[batch_size, num_boxes, num_classes]`
217
+
/// representing a single score corresponding to each box(each row of boxes).
218
+
/// </param>
219
+
/// <param name="max_output_size_per_class">
220
+
/// A scalar integer `Tensor` representing the
221
+
/// maximum number of boxes to be selected by non-max suppression per class
222
+
/// </param>
223
+
/// <param name="max_total_size">
224
+
/// A int32 scalar representing maximum number of boxes retained
225
+
/// over all classes.Note that setting this value to a large number may
226
+
/// result in OOM error depending on the system workload.
227
+
/// </param>
228
+
/// <param name="iou_threshold">
229
+
/// A float representing the threshold for deciding whether boxes
230
+
/// overlap too much with respect to IOU.
231
+
/// </param>
232
+
/// <param name="score_threshold">
233
+
/// A float representing the threshold for deciding when to
234
+
/// remove boxes based on score.
235
+
/// </param>
236
+
/// <param name="pad_per_class">
237
+
/// If false, the output nmsed boxes, scores and classes are
238
+
/// padded/clipped to `max_total_size`. If true, the output nmsed boxes, scores and classes are padded to be of length `max_size_per_class`*`num_classes`,
239
+
/// unless it exceeds `max_total_size` in which case it is clipped to `max_total_size`. Defaults to false.
240
+
/// </param>
241
+
/// <param name="clip_boxes">
242
+
/// If true, the coordinates of output nmsed boxes will be clipped
243
+
/// to[0, 1]. If false, output the box coordinates as it is. Defaults to true.
244
+
/// </param>
245
+
/// <returns>
246
+
/// 'nmsed_boxes': A [batch_size, max_detections, 4] float32 tensor containing the non-max suppressed boxes.
247
+
/// 'nmsed_scores': A [batch_size, max_detections] float32 tensor containing the scores for the boxes.
248
+
/// 'nmsed_classes': A [batch_size, max_detections] float32 tensor containing the class for boxes.
249
+
/// 'valid_detections': A [batch_size] int32 tensor indicating the number of
250
+
/// valid detections per batch item. Only the top valid_detections[i] entries
251
+
/// in nms_boxes[i], nms_scores[i] and nms_class[i] are valid. The rest of the
/// Extracts crops from the input image tensor and resizes them using bilinear sampling or nearest neighbor sampling (possibly with aspect ratio change) to a common output size specified by crop_size. This is more general than the crop_to_bounding_box op which extracts a fixed size slice from the input image and does not allow resizing or aspect ratio change.
@@ -187,7 +282,19 @@ public Tensor decode_jpeg(Tensor contents,
187
282
/// <param name="name">A name for the operation (optional).</param>
188
283
/// <returns>A 4-D tensor of shape [num_boxes, crop_height, crop_width, depth].</returns>
0 commit comments