Skip to content

Commit 0f0fae1

Browse files
authored
Merge pull request #232 from SciML/fb/docstrings
nicify some docstrings and descriptions
2 parents 1c7eb69 + eed1579 commit 0f0fae1

File tree

1 file changed

+22
-18
lines changed

1 file changed

+22
-18
lines changed

src/Blocks/continuous.jl

Lines changed: 22 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,8 @@
11
"""
22
Integrator(;name, k = 1, x = 0.0)
33
4-
Outputs `y = ∫k*u dt`, corresponding to the transfer function `1/s`.
5-
Initial value of integrator state `x` can be set with `x`
4+
Outputs `y = ∫k*u dt`, corresponding to the transfer function ``1/s``.
5+
Initial value of integrator state ``x`` can be set with `x`
66
77
# Connectors:
88
@@ -19,7 +19,7 @@ Initial value of integrator state `x` can be set with `x`
1919
x(t) = 0.0, [description = "State of Integrator"]
2020
end
2121
@parameters begin
22-
k = 1, [description = "Gain of Integrator"]
22+
k = 1, [description = "Gain"]
2323
end
2424
@equations begin
2525
D(x) ~ k * u
@@ -30,7 +30,7 @@ end
3030
Derivative(; name, k = 1, T, x = 0.0)
3131
3232
Outputs an approximate derivative of the input. The transfer function of this block is
33-
Initial value of the state `x` can be set with `x`
33+
Initial value of the state ``x`` can be set with `x`
3434
3535
```
3636
k k
@@ -57,11 +57,11 @@ A smaller `T` leads to a more ideal approximation of the derivative.
5757
@mtkmodel Derivative begin
5858
@extend u, y = siso = SISO()
5959
@variables begin
60-
x(t) = 0.0, [description = "State of Derivative"]
60+
x(t) = 0.0, [description = "Derivative-filter state"]
6161
end
6262
@parameters begin
63-
T = T, [description = "Time constant of Derivative"]
64-
k = 1, [description = "Gain of Derivative"]
63+
T = T, [description = "Time constant"]
64+
k = 1, [description = "Gain"]
6565
end
6666
begin
6767
@symcheck T > 0 ||
@@ -77,8 +77,8 @@ end
7777
FirstOrder(; name, k = 1.0, T, x = 0.0, lowpass = true)
7878
7979
A first-order filter with a single real pole in `s = -T` and gain `k`. If `lowpass=true` (default), the transfer function
80-
is given by `Y(s)/U(s) = `
81-
Initial value of the state `x` can be set with `x`
80+
is given by ``Y(s)/U(s) = ``
81+
8282
8383
```
8484
k
@@ -94,10 +94,12 @@ sT + 1 - k
9494
sT + 1
9595
```
9696
97+
Initial value of the state `x` can be set with `x`
98+
9799
# Parameters:
98100
99101
- `k`: Gain
100-
- `T`: [s] Time constants (T>0 required)
102+
- `T`: [s] Time constant (T>0 required)
101103
102104
# Connectors:
103105
@@ -108,26 +110,28 @@ See also [`SecondOrder`](@ref)
108110
"""
109111
@mtkmodel FirstOrder begin
110112
@extend u, y = siso = SISO()
113+
@structural_parameters begin
114+
lowpass = true
115+
end
111116
@variables begin
112117
x(t) = 0.0, [description = "State of FirstOrder filter"]
113118
end
114119
@parameters begin
115-
lowpass = true
116-
T = T, [description = "Time constant of FirstOrder filter"]
117-
k = 1.0, [description = "Gain of FirstOrder"]
120+
T = T, [description = "Time constant"]
121+
k = 1.0, [description = "Gain"]
118122
end
119123
begin
120124
@symcheck T > 0 ||
121125
throw(ArgumentError("Time constant `T` has to be strictly positive"))
122126
end
123127
@equations begin
124128
D(x) ~ (k * u - x) / T
125-
getdefault(lowpass) ? y ~ x : y ~ k * u - x
129+
lowpass ? y ~ x : y ~ k * u - x
126130
end
127131
end
128132

129133
"""
130-
SecondOrder(; name, k = 1.0, w, d, x = 0.0, xd = 0.0)
134+
SecondOrder(; name, k = 1.0, w = 1.0, d = 1.0, x = 0.0, xd = 0.0)
131135
132136
A second-order filter with gain `k`, a bandwidth of `w` rad/s and relative damping `d`. The transfer function
133137
is given by `Y(s)/U(s) = `
@@ -160,9 +164,9 @@ Initial value of the state `x` can be set with `x`, and of derivative state `xd`
160164
xd(t) = 0.0, [description = "Derivative state of SecondOrder filter"]
161165
end
162166
@parameters begin
163-
k = 1.0, [description = "Gain of SecondOrder"]
164-
w, [description = "Bandwidth of SecondOrder"]
165-
d, [description = "Relative damping of SecondOrder"]
167+
k = 1.0, [description = "Gain"]
168+
w = 1.0, [description = "Bandwidth (angular frequency)"]
169+
d = 1.0, [description = "Relative damping"]
166170
end
167171
@equations begin
168172
D(x) ~ xd

0 commit comments

Comments
 (0)