diff --git a/lectures/heavy_tails.md b/lectures/heavy_tails.md index b2b1756a..b396ddb7 100644 --- a/lectures/heavy_tails.md +++ b/lectures/heavy_tails.md @@ -118,7 +118,7 @@ too much from the mean. Putting this another way, light-tailed distributions are those that rarely generate extreme values. -(A more formal definition is given [below](https://intro.quantecon.org/heavy_tails.html#light-and-heavy-tails).) +(A more formal definition is given {ref}`below `.) Many statisticians and econometricians use rules of thumb such as "outcomes more than four or five @@ -262,7 +262,7 @@ like * forecasting * taxation (across a heavy-tailed income distribution), etc. -We return to these points [below](https://intro.quantecon.org/heavy_tails.html#why-do-heavy-tails-matter). +We return to these points {ref}`below `. @@ -467,6 +467,8 @@ fig, ax = plt.subplots() alpha = 1.0 ax.plot(x, np.exp(- alpha * x), label='exponential', alpha=0.8) ax.plot(x, x**(- alpha), label='Pareto', alpha=0.8) +ax.set_xlabel('X value') +ax.set_ylabel('CCDF') ax.legend() plt.show() ``` @@ -479,6 +481,8 @@ fig, ax = plt.subplots() alpha = 1.0 ax.loglog(x, np.exp(- alpha * x), label='exponential', alpha=0.8) ax.loglog(x, x**(- alpha), label='Pareto', alpha=0.8) +ax.set_xlabel('log value') +ax.set_ylabel('log prob') ax.legend() plt.show() ``` @@ -848,6 +852,7 @@ The sequence shows no sign of converging. We return to this point in the exercises. +(heavy-tail:application)= ## Why do heavy tails matter? We have now seen that @@ -925,6 +930,7 @@ nonnegative random variables and their distributions. The definitions for left hand tails are very similar and we omit them to simplify the exposition. +(heavy-tail:formal-definition)= ### Light and heavy tails A distribution $F$ with density $f$ on $\mathbb R_+$ is called **heavy-tailed** if