Skip to content

Commit b607dd1

Browse files
committed
adjust line colour
1 parent b135dd8 commit b607dd1

File tree

1 file changed

+12
-10
lines changed

1 file changed

+12
-10
lines changed

lectures/heavy_tails.md

Lines changed: 12 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -182,6 +182,7 @@ The code below produces the desired plot using Yahoo financial data via the `yfi
182182

183183
```{code-cell} ipython3
184184
:tags: [hide-output]
185+
185186
data = yf.download('AMZN', '2015-1-1', '2022-7-1')
186187
```
187188

@@ -213,6 +214,7 @@ We get a similar picture if we look at other assets, such as Bitcoin
213214

214215
```{code-cell} ipython3
215216
:tags: [hide-output]
217+
216218
data = yf.download('BTC-USD', '2015-1-1', '2022-7-1')
217219
```
218220

@@ -254,7 +256,7 @@ ax.hist(r, bins=60, alpha=0.4, label='bitcoin returns', density=True)
254256
xmin, xmax = plt.xlim()
255257
x = np.linspace(xmin, xmax, 100)
256258
p = norm.pdf(x, np.mean(r), np.std(r))
257-
ax.plot(x, p, 'k', linewidth=2, label='normal distribution')
259+
ax.plot(x, p, linewidth=2, label='normal distribution')
258260
259261
ax.set_xlabel('returns', fontsize=12)
260262
ax.legend()
@@ -768,12 +770,12 @@ Here is a plot of the firm size distribution for the largest 500 firms in 2020 t
768770

769771
```{code-cell} ipython3
770772
---
771-
tags: [hide-input]
772773
mystnb:
773774
figure:
774775
caption: Firm size distribution
775776
name: firm-size-dist
776-
---
777+
tags: [hide-input]
778+
---
777779
778780
df_fs = pd.read_csv('https://media.githubusercontent.com/media/QuantEcon/high_dim_data/main/cross_section/forbes-global2000.csv')
779781
df_fs = df_fs[['Country', 'Sales', 'Profits', 'Assets', 'Market Value']]
@@ -795,12 +797,12 @@ The size is measured by population.
795797

796798
```{code-cell} ipython3
797799
---
798-
tags: [hide-input]
799800
mystnb:
800801
figure:
801802
caption: City size distribution
802803
name: city-size-dist
803-
---
804+
tags: [hide-input]
805+
---
804806
805807
# import population data of cities in 2023 United States and 2023 Brazil from world population review
806808
df_cs_us = pd.read_csv('https://media.githubusercontent.com/media/QuantEcon/high_dim_data/main/cross_section/cities_us.csv')
@@ -822,12 +824,12 @@ The data is from the Forbes Billionaires list in 2020.
822824

823825
```{code-cell} ipython3
824826
---
825-
tags: [hide-input]
826827
mystnb:
827828
figure:
828829
caption: Wealth distribution (Forbes Billionaires in 2020)
829830
name: wealth-dist
830-
---
831+
tags: [hide-input]
832+
---
831833
832834
df_w = pd.read_csv('https://media.githubusercontent.com/media/QuantEcon/high_dim_data/main/cross_section/forbes-billionaires.csv')
833835
df_w = df_w[['country', 'realTimeWorth', 'realTimeRank']].dropna()
@@ -878,12 +880,12 @@ df_gdp1.dropna(inplace=True)
878880

879881
```{code-cell} ipython3
880882
---
881-
tags: [hide-input]
882883
mystnb:
883884
figure:
884885
caption: GDP per capita distribution
885886
name: gdppc-dist
886-
---
887+
tags: [hide-input]
888+
---
887889
888890
fig, axes = plt.subplots(1, 2, figsize=(8.8, 3.6))
889891
@@ -934,7 +936,7 @@ mystnb:
934936
figure:
935937
caption: LLN failure
936938
name: fail-lln
937-
---
939+
---
938940
from scipy.stats import cauchy
939941
940942
np.random.seed(1234)

0 commit comments

Comments
 (0)