@@ -135,7 +135,7 @@ curve minus $p q$:
135
135
$$
136
136
S_c(q) :=
137
137
\int_0^{q} (d_0 - d_1 x) dx - p q
138
- $$
138
+ $$ (eq:cstm_spls)
139
139
140
140
The next figure illustrates
141
141
@@ -172,14 +172,14 @@ plt.show()
172
172
Consumer surplus provides a measure of total consumer welfare at quantity $q$.
173
173
174
174
The idea is that the inverse demand curve $d_0 - d_1 q$ shows a consumer's willingness to
175
- pay for an additional increment of the good at a given quantity $q$.
175
+ pay for an additional increment of the good at a given quantity $q$.
176
176
177
177
The difference between willingness to pay and the actual price is consumer surplus.
178
178
179
179
The value $S_c(q)$ is the "sum" (i.e., integral) of these surpluses when the total
180
180
quantity purchased is $q$ and the purchase price is $p$.
181
181
182
- Evaluating the integral in the definition of consumer surplus gives
182
+ Evaluating the integral in the definition of consumer surplus {eq}`eq:cstm_spls` gives
183
183
184
184
$$
185
185
S_c(q)
@@ -200,7 +200,7 @@ We define **producer surplus** as $p q$ minus the area under an inverse supply c
200
200
$$
201
201
S_p(q)
202
202
:= p q - \int_0^q (s_0 + s_1 x) dx
203
- $$
203
+ $$ (eq:pdcr_spls)
204
204
205
205
The next figure illustrates
206
206
@@ -243,7 +243,7 @@ The difference between willingness to sell and the actual price is producer surp
243
243
244
244
The value $S_p(q)$ is the integral of these surpluses.
245
245
246
- Evaluating the integral in the definition of consumer surplus gives
246
+ Evaluating the integral in the definition of producer surplus {eq}`eq:pdcr_spls` gives
247
247
248
248
$$
249
249
S_p(q) = pq - s_0 q - \frac{1}{2} s_1 q^2
0 commit comments