@@ -303,24 +303,6 @@ The next figure plots the supply of capital, as in [](saving_log_2_olg), as well
303
303
304
304
(For the special case of log utility, supply does not depend on the interest rate, so we have a constant function.)
305
305
306
- ``` {code-cell} ipython3
307
- R_vals = np.linspace(0.3, 1)
308
- α, β = 0.5, 0.9
309
- w = 2.0
310
-
311
- fig, ax = plt.subplots()
312
-
313
- ax.plot(R_vals, capital_demand(R_vals, α),
314
- label="aggregate demand")
315
- ax.plot(R_vals, capital_supply(R_vals, β, w),
316
- label="aggregate supply")
317
-
318
- ax.set_xlabel("$R_{t+1}$")
319
- ax.set_ylabel("$k_{t+1}$")
320
- ax.legend()
321
- plt.show()
322
- ```
323
-
324
306
## Equilibrium
325
307
326
308
In this section we derive equilibrium conditions and investigate an example.
@@ -409,15 +391,7 @@ ax.plot(R_vals, capital_supply(R_vals, β, w),
409
391
R_e = equilibrium_R_log_utility(α, β, w)
410
392
k_e = (β / (1 + β)) * w
411
393
412
- ax.plot(R_e, k_e, 'go', ms=6, alpha=0.6)
413
-
414
- ax.annotate(r'equilibrium',
415
- xy=(R_e, k_e),
416
- xycoords='data',
417
- xytext=(0, 60),
418
- textcoords='offset points',
419
- fontsize=12,
420
- arrowprops=dict(arrowstyle="->"))
394
+ ax.plot(R_e, k_e, 'o',label='equilibrium')
421
395
422
396
ax.set_xlabel("$R_{t+1}$")
423
397
ax.set_ylabel("$k_{t+1}$")
0 commit comments