Skip to content

Commit 0a43723

Browse files
committed
Humphrey's 20 Mar updates on math aligned syntax
1 parent ad1fa6d commit 0a43723

File tree

3 files changed

+42
-42
lines changed

3 files changed

+42
-42
lines changed

lectures/ak2.md

Lines changed: 18 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -219,10 +219,10 @@ $$
219219
To maximize profits a firm equates marginal products to rental rates:
220220
221221
$$
222-
\begin{align}
222+
\begin{aligned}
223223
W_t & = (1-\alpha) K_t^\alpha L_t^{-\alpha} \\
224224
r_t & = \alpha K_t^\alpha L_t^{1-\alpha}
225-
\end{align}
225+
\end{aligned}
226226
$$ (eq:firmfonc)
227227
228228
Output can either be consumed by old or young households, sold to young households who use it to augment the capital stock, or sold to the government for uses that do not generate utility for the people in the model (e.g., ``thrown into the ocean'').
@@ -275,10 +275,10 @@ $$ (eq:utilfn)
275275
subject to the following budget constraints at times $t$ and $t+1$:
276276
277277
$$
278-
\begin{align}
278+
\begin{aligned}
279279
C_{yt} + A_{t+1} & = W_t (1 - \tau_t) - \delta_{yt} \\
280280
C_{ot+1} & = (1+ r_{t+1} (1 - \tau_{t+1}))A_{t+1} - \delta_{ot}
281-
\end{align}
281+
\end{aligned}
282282
$$ (eq:twobudgetc)
283283
284284
@@ -291,9 +291,9 @@ $$ (eq:onebudgetc)
291291
To solve the young household's choice problem, form a Lagrangian
292292
293293
$$
294-
\begin{align}
294+
\begin{aligned}
295295
{\mathcal L} & = C_{yt}^\beta C_{o,t+1}^{1-\beta} \\ & + \lambda \Bigl[ C_{yt} + \frac{C_{ot+1}}{1 + r_{t+1}(1 - \tau_{t+1})} - W_t (1 - \tau_t) + \delta_{yt} + \frac{\delta_{ot}}{1 + r_{t+1}(1 - \tau_{t+1})}\Bigr],
296-
\end{align}
296+
\end{aligned}
297297
$$ (eq:lagC)
298298
299299
where $\lambda$ is a Lagrange multiplier on the intertemporal budget constraint {eq}`eq:onebudgetc`.
@@ -303,10 +303,10 @@ After several lines of algebra, the intertemporal budget constraint {eq}`eq:oneb
303303
imply that an optimal consumption plan satisfies
304304
305305
$$
306-
\begin{align}
306+
\begin{aligned}
307307
C_{yt} & = \beta \Bigl[ W_t (1 - \tau_t) - \delta_{yt} - \frac{\delta_{ot}}{1 + r_{t+1}(1 - \tau_{t+1})}\Bigr] \\
308308
\frac{C_{0t+1}}{1 + r_{t+1}(1-\tau_{t+1}) } & = (1-\beta) \Bigl[ W_t (1 - \tau_t) - \delta_{yt} - \frac{\delta_{ot}}{1 + r_{t+1}(1 - \tau_{t+1})}\Bigr]
309-
\end{align}
309+
\end{aligned}
310310
$$ (eq:optconsplan)
311311
312312
The first-order condition for minimizing Lagrangian {eq}`eq:lagC` with respect to the Lagrange multipler $\lambda$ recovers the budget constraint {eq}`eq:onebudgetc`,
@@ -352,10 +352,10 @@ As our special case of {eq}`eq:optconsplan`, we compute the following consumptio
352352
353353
354354
$$
355-
\begin{align}
355+
\begin{aligned}
356356
C_{yt} & = \beta (1 - \tau_t) W_t \\
357357
A_{t+1} &= (1-\beta) (1- \tau_t) W_t
358-
\end{align}
358+
\end{aligned}
359359
$$
360360
361361
Using {eq}`eq:firmfonc` and $A_t = K_t + D_t$, we obtain the following closed form transition law for capital:
@@ -369,20 +369,20 @@ $$ (eq:Klawclosed)
369369
From {eq}`eq:Klawclosed` and the government budget constraint {eq}`eq:govbudgetsequence`, we compute **time-invariant** or **steady state values** $\hat K, \hat D, \hat T$:
370370
371371
$$
372-
\begin{align}
372+
\begin{aligned}
373373
\hat{K} &=\hat{K}\left(1-\hat{\tau}\right)\left(1-\alpha\right)\left(1-\beta\right) - \hat{D} \\
374374
\hat{D} &= (1 + \hat{r}) \hat{D} + \hat{G} - \hat{T} \\
375375
\hat{T} &= \hat{\tau} \hat{Y} + \hat{\tau} \hat{r} \hat{D} .
376-
\end{align}
376+
\end{aligned}
377377
$$ (eq:steadystates)
378378
379379
These imply
380380
381381
$$
382-
\begin{align}
382+
\begin{aligned}
383383
\hat{K} &= \left[\left(1-\hat{\tau}\right)\left(1-\alpha\right)\left(1-\beta\right)\right]^{\frac{1}{1-\alpha}} \\
384384
\hat{\tau} &= \frac{\hat{G} + \hat{r} \hat{D}}{\hat{Y} + \hat{r} \hat{D}}
385-
\end{align}
385+
\end{aligned}
386386
$$
387387
388388
Let's take an example in which
@@ -393,11 +393,11 @@ Let's take an example in which
393393
Our formulas for steady-state values tell us that
394394
395395
$$
396-
\begin{align}
396+
\begin{aligned}
397397
\hat{D} &= 0 \\
398398
\hat{G} &= 0.15 \hat{Y} \\
399399
\hat{\tau} &= 0.15 \\
400-
\end{align}
400+
\end{aligned}
401401
$$
402402
403403
@@ -699,12 +699,12 @@ To illustrate the power of `ClosedFormTrans`, let's first experiment with the fo
699699
The following equations completely characterize the equilibrium transition path originating from the initial steady state
700700
701701
$$
702-
\begin{align}
702+
\begin{aligned}
703703
K_{t+1} &= K_{t}^{\alpha}\left(1-\tau_{t}\right)\left(1-\alpha\right)\left(1-\beta\right) - \bar{D} \\
704704
\tau_{0} &= (1-\frac{1}{3}) \hat{\tau} \\
705705
\bar{D} &= \hat{G} - \tau_0\hat{Y} \\
706706
\quad\tau_{t} & =\frac{\hat{G}+r_{t} \bar{D}}{\hat{Y}+r_{t} \bar{D}}
707-
\end{align}
707+
\end{aligned}
708708
$$
709709
710710
We can simulate the transition of the economy for $20$ periods, after which the economy will be fairly close to the new steady state.

lectures/money_inflation.md

Lines changed: 12 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -192,21 +192,21 @@ This is true in the present model.
192192
193193
In a **steady state** equilibrium of the model we are studying,
194194
195-
\begin{align}
195+
\begin{aligned}
196196
R_t & = \bar R \cr
197197
b_t & = \bar b
198-
\end{align}
198+
\end{aligned}
199199
200200
for $t \geq 0$.
201201
202202
Notice that both $R_t = \frac{p_t}{p_{t+1}}$ and $b_t = \frac{m_{t+1}}{p_t} $ are **ratios**.
203203
204204
To compute a steady state, we seek gross rates of return on currency $\bar R, \bar b$ that satisfy steady-state versions of both the government budget constraint and the demand function for real balances:
205205
206-
\begin{align}
206+
\begin{aligned}
207207
g & = \bar b ( 1 - \bar R) \cr
208208
\bar b & = \gamma_1- \gamma_2 \bar R^{-1}
209-
\end{align}
209+
\end{aligned}
210210
211211
Together these equations imply
212212
@@ -379,10 +379,10 @@ We shall deploy two distinct computation strategies.
379379
* set $R_0 \in [\frac{\gamma_2}{\gamma_1}, R_u]$ and compute $b_0 = \gamma_1 - \gamma_2/R_0$.
380380
381381
* compute sequences $\{R_t, b_t\}_{t=1}^\infty$ of rates of return and real balances that are associated with an equilibrium by solving equation {eq}`eq:bmotion` and {eq}`eq:bdemand` sequentially for $t \geq 1$:
382-
\begin{align}
382+
\begin{aligned}
383383
b_t & = b_{t-1} R_{t-1} + g \cr
384384
R_t^{-1} & = \frac{\gamma_1}{\gamma_2} - \gamma_2^{-1} b_t
385-
\end{align}
385+
\end{aligned}
386386
387387
* Construct the associated equilibrium $p_0$ from
388388
@@ -393,10 +393,10 @@ R_t^{-1} & = \frac{\gamma_1}{\gamma_2} - \gamma_2^{-1} b_t
393393
* compute $\{p_t, m_t\}_{t=1}^\infty$ by solving the following equations sequentially
394394
395395
$$
396-
\begin{align}
396+
\begin{aligned}
397397
p_t & = R_t p_{t-1} \cr
398398
m_t & = b_{t-1} p_t
399-
\end{align}
399+
\end{aligned}
400400
$$ (eq:method1)
401401
402402
**Remark 1:** method 1 uses an indirect approach to computing an equilibrium by first computing an equilibrium $\{R_t, b_t\}_{t=0}^\infty$ sequence and then using it to back out an equilibrium $\{p_t, m_t\}_{t=0}^\infty$ sequence.
@@ -458,10 +458,10 @@ Start at $t=0$
458458

459459
Then for $t \geq 1$ construct $(b_t, R_t)$ by
460460
iterating on the system
461-
\begin{align}
461+
\begin{aligned}
462462
b_t & = b_{t-1} R_{t-1} + g \cr
463463
R_t^{-1} & = \frac{\gamma_1}{\gamma_2} - \gamma_2^{-1} b_t
464-
\end{align}
464+
\end{aligned}
465465

466466

467467
When we implement this part of method 1, we shall discover the following striking
@@ -605,11 +605,11 @@ $$
605605
606606
where
607607
608-
\begin{align} H_1 & = \begin{bmatrix} 1 & \gamma_2 \cr
608+
\begin{aligned} H_1 & = \begin{bmatrix} 1 & \gamma_2 \cr
609609
1 & 0 \end{bmatrix} \cr
610610
H_2 & = \begin{bmatrix} 0 & \gamma_1 \cr
611611
1 & g \end{bmatrix}
612-
\end{align}
612+
\end{aligned}
613613
614614
```{code-cell} ipython3
615615
H1 = np.array([[1, msm.γ2],

lectures/unpleasant.md

Lines changed: 12 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -142,19 +142,19 @@ Just before time $0$, the government chooses $(m_0, B_{-1})$ subject to constra
142142
For $t =0, 1, \ldots, T-1$,
143143
144144
$$
145-
\begin{align}
145+
\begin{aligned}
146146
B_t & = \widetilde R B_{t-1} + g \cr
147147
m_{t+1} & = m_0
148-
\end{align}
148+
\end{aligned}
149149
$$
150150
151151
while for $t \geq T$,
152152
153153
$$
154-
\begin{align}
154+
\begin{aligned}
155155
B_t & = B_{T-1} \cr
156156
m_{t+1} & = m_t + p_t \overline g
157-
\end{align}
157+
\end{aligned}
158158
$$
159159
160160
where
@@ -188,21 +188,21 @@ For reasons described at the end of **this lecture**, we select the larger root
188188
Next, we compute
189189
190190
$$
191-
\begin{align}
191+
\begin{aligned}
192192
R_T & = R_u \cr
193193
b_T & = \gamma_1 - \gamma_2 R_u^{-1} \cr
194194
p_T & = \frac{m_0}{\gamma_1 - \overline g - \gamma_2 R_u^{-1}}
195-
\end{align}
195+
\end{aligned}
196196
$$ (eq:LafferTstationary)
197197
198198
199199
We can compute continuation sequences $\{R_t, b_t\}_{t=T+1}^\infty$ of rates of return and real balances that are associated with an equilibrium by solving equation {eq}`eq:up_bmotion` and {eq}`eq:up_bdemand` sequentially for $t \geq 1$:
200-
\begin{align}
200+
\begin{aligned}
201201
b_t & = b_{t-1} R_{t-1} + \overline g \cr
202202
R_t^{-1} & = \frac{\gamma_1}{\gamma_2} - \gamma_2^{-1} b_t \cr
203203
p_t & = R_t p_{t-1} \cr
204204
m_t & = b_{t-1} p_t
205-
\end{align}
205+
\end{aligned}
206206
207207
208208
@@ -219,22 +219,22 @@ Our restrictions that $\gamma_1 > \gamma_2 > 0$ imply that $\lambda \in [0,1)$.
219219
We want to compute
220220
221221
$$
222-
\begin{align}
222+
\begin{aligned}
223223
p_0 & = \gamma_1^{-1} \left[ \sum_{j=0}^\infty \lambda^j m_{1+j} \right] \cr
224224
& = \gamma_1^{-1} \left[ \sum_{j=0}^{T-1} \lambda^j m_{0} + \sum_{j=T}^\infty \lambda^j m_{1+j} \right]
225-
\end{align}
225+
\end{aligned}
226226
$$
227227
228228
Thus,
229229
230230
$$
231-
\begin{align}
231+
\begin{aligned}
232232
p_0 & = \gamma_1^{-1} m_0 \left\{ \frac{1 - \lambda^T}{1-\lambda} + \frac{\lambda^T}{R_u-\lambda} \right\} \cr
233233
p_1 & = \gamma_1^{-1} m_0 \left\{ \frac{1 - \lambda^{T-1}}{1-\lambda} + \frac{\lambda^{T-1}}{R_u-\lambda} \right\} \cr
234234
\quad \vdots & \quad \quad \vdots \cr
235235
p_{T-1} & = \gamma_1^{-1} m_0 \left\{ \frac{1 - \lambda}{1-\lambda} + \frac{\lambda}{R_u-\lambda} \right\} \cr
236236
p_T & = \gamma_1^{-1} m_0 \left\{\frac{1}{R_u-\lambda} \right\}
237-
\end{align}
237+
\end{aligned}
238238
$$ (eq:allts)
239239
240240
We can implement the preceding formulas by iterating on

0 commit comments

Comments
 (0)