You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: lectures/ak2.md
+18-18Lines changed: 18 additions & 18 deletions
Original file line number
Diff line number
Diff line change
@@ -219,10 +219,10 @@ $$
219
219
To maximize profits a firm equates marginal products to rental rates:
220
220
221
221
$$
222
-
\begin{align}
222
+
\begin{aligned}
223
223
W_t & = (1-\alpha) K_t^\alpha L_t^{-\alpha} \\
224
224
r_t & = \alpha K_t^\alpha L_t^{1-\alpha}
225
-
\end{align}
225
+
\end{aligned}
226
226
$$ (eq:firmfonc)
227
227
228
228
Output can either be consumed by old or young households, sold to young households who use it to augment the capital stock, or sold to the government for uses that do not generate utility for the people in the model (e.g., ``thrown into the ocean'').
@@ -275,10 +275,10 @@ $$ (eq:utilfn)
275
275
subject to the following budget constraints at times $t$ and $t+1$:
The first-order condition for minimizing Lagrangian {eq}`eq:lagC` with respect to the Lagrange multipler $\lambda$ recovers the budget constraint {eq}`eq:onebudgetc`,
@@ -352,10 +352,10 @@ As our special case of {eq}`eq:optconsplan`, we compute the following consumptio
352
352
353
353
354
354
$$
355
-
\begin{align}
355
+
\begin{aligned}
356
356
C_{yt} & = \beta (1 - \tau_t) W_t \\
357
357
A_{t+1} &= (1-\beta) (1- \tau_t) W_t
358
-
\end{align}
358
+
\end{aligned}
359
359
$$
360
360
361
361
Using {eq}`eq:firmfonc` and $A_t = K_t + D_t$, we obtain the following closed form transition law for capital:
@@ -369,20 +369,20 @@ $$ (eq:Klawclosed)
369
369
From {eq}`eq:Klawclosed` and the government budget constraint {eq}`eq:govbudgetsequence`, we compute **time-invariant** or **steady state values** $\hat K, \hat D, \hat T$:
Copy file name to clipboardExpand all lines: lectures/money_inflation.md
+12-12Lines changed: 12 additions & 12 deletions
Original file line number
Diff line number
Diff line change
@@ -192,21 +192,21 @@ This is true in the present model.
192
192
193
193
In a **steady state** equilibrium of the model we are studying,
194
194
195
-
\begin{align}
195
+
\begin{aligned}
196
196
R_t & = \bar R \cr
197
197
b_t & = \bar b
198
-
\end{align}
198
+
\end{aligned}
199
199
200
200
for $t \geq 0$.
201
201
202
202
Notice that both $R_t = \frac{p_t}{p_{t+1}}$ and $b_t = \frac{m_{t+1}}{p_t} $ are **ratios**.
203
203
204
204
To compute a steady state, we seek gross rates of return on currency $\bar R, \bar b$ that satisfy steady-state versions of both the government budget constraint and the demand function for real balances:
205
205
206
-
\begin{align}
206
+
\begin{aligned}
207
207
g & = \bar b ( 1 - \bar R) \cr
208
208
\bar b & = \gamma_1- \gamma_2 \bar R^{-1}
209
-
\end{align}
209
+
\end{aligned}
210
210
211
211
Together these equations imply
212
212
@@ -379,10 +379,10 @@ We shall deploy two distinct computation strategies.
379
379
* set $R_0 \in [\frac{\gamma_2}{\gamma_1}, R_u]$ and compute $b_0 = \gamma_1 - \gamma_2/R_0$.
380
380
381
381
* compute sequences $\{R_t, b_t\}_{t=1}^\infty$ of rates of return and real balances that are associated with an equilibrium by solving equation {eq}`eq:bmotion` and {eq}`eq:bdemand` sequentially for $t \geq 1$:
* compute $\{p_t, m_t\}_{t=1}^\infty$ by solving the following equations sequentially
394
394
395
395
$$
396
-
\begin{align}
396
+
\begin{aligned}
397
397
p_t & = R_t p_{t-1} \cr
398
398
m_t & = b_{t-1} p_t
399
-
\end{align}
399
+
\end{aligned}
400
400
$$ (eq:method1)
401
401
402
402
**Remark 1:** method 1 uses an indirect approach to computing an equilibrium by first computing an equilibrium $\{R_t, b_t\}_{t=0}^\infty$ sequence and then using it to back out an equilibrium $\{p_t, m_t\}_{t=0}^\infty$ sequence.
Copy file name to clipboardExpand all lines: lectures/unpleasant.md
+12-12Lines changed: 12 additions & 12 deletions
Original file line number
Diff line number
Diff line change
@@ -142,19 +142,19 @@ Just before time $0$, the government chooses $(m_0, B_{-1})$ subject to constra
142
142
For $t =0, 1, \ldots, T-1$,
143
143
144
144
$$
145
-
\begin{align}
145
+
\begin{aligned}
146
146
B_t & = \widetilde R B_{t-1} + g \cr
147
147
m_{t+1} & = m_0
148
-
\end{align}
148
+
\end{aligned}
149
149
$$
150
150
151
151
while for $t \geq T$,
152
152
153
153
$$
154
-
\begin{align}
154
+
\begin{aligned}
155
155
B_t & = B_{T-1} \cr
156
156
m_{t+1} & = m_t + p_t \overline g
157
-
\end{align}
157
+
\end{aligned}
158
158
$$
159
159
160
160
where
@@ -188,21 +188,21 @@ For reasons described at the end of **this lecture**, we select the larger root
188
188
Next, we compute
189
189
190
190
$$
191
-
\begin{align}
191
+
\begin{aligned}
192
192
R_T & = R_u \cr
193
193
b_T & = \gamma_1 - \gamma_2 R_u^{-1} \cr
194
194
p_T & = \frac{m_0}{\gamma_1 - \overline g - \gamma_2 R_u^{-1}}
195
-
\end{align}
195
+
\end{aligned}
196
196
$$ (eq:LafferTstationary)
197
197
198
198
199
199
We can compute continuation sequences $\{R_t, b_t\}_{t=T+1}^\infty$ of rates of return and real balances that are associated with an equilibrium by solving equation {eq}`eq:up_bmotion` and {eq}`eq:up_bdemand` sequentially for $t \geq 1$:
0 commit comments