@@ -48,11 +48,11 @@ def gromov_wasserstein(
48
48
\mathbf{T}^* \in \mathop{\arg \min}_\mathbf{T} \quad \sum_{i,j,k,l}
49
49
L(\mathbf{C_1}_{i,k}, \mathbf{C_2}_{j,l}) \mathbf{T}_{i,j} \mathbf{T}_{k,l}
50
50
51
- s.t. \ \mathbf{\gamma } \mathbf{1} &= \mathbf{p}
51
+ s.t. \ \mathbf{T } \mathbf{1} &= \mathbf{p}
52
52
53
- \mathbf{\gamma }^T \mathbf{1} &= \mathbf{q}
53
+ \mathbf{T }^T \mathbf{1} &= \mathbf{q}
54
54
55
- \mathbf{\gamma } &\geq 0
55
+ \mathbf{T } &\geq 0
56
56
57
57
Where :
58
58
@@ -65,7 +65,7 @@ def gromov_wasserstein(
65
65
.. note:: This function is backend-compatible and will work on arrays
66
66
from all compatible backends. But the algorithm uses the C++ CPU backend
67
67
which can lead to copy overhead on GPU arrays.
68
- .. note:: All computations in the conjugate gradient solver are done with
68
+ .. note:: All computations in the conditional gradient solver are done with
69
69
numpy to limit memory overhead.
70
70
.. note:: This function will cast the computed transport plan to the data
71
71
type of the provided input :math:`\mathbf{C}_1`. Casting to an integer
@@ -279,11 +279,11 @@ def gromov_wasserstein2(
279
279
\mathbf{GW} = \min_\mathbf{T} \quad \sum_{i,j,k,l}
280
280
L(\mathbf{C_1}_{i,k}, \mathbf{C_2}_{j,l}) \mathbf{T}_{i,j} \mathbf{T}_{k,l}
281
281
282
- s.t. \ \mathbf{\gamma } \mathbf{1} &= \mathbf{p}
282
+ s.t. \ \mathbf{T } \mathbf{1} &= \mathbf{p}
283
283
284
- \mathbf{\gamma }^T \mathbf{1} &= \mathbf{q}
284
+ \mathbf{T }^T \mathbf{1} &= \mathbf{q}
285
285
286
- \mathbf{\gamma } &\geq 0
286
+ \mathbf{T } &\geq 0
287
287
288
288
Where :
289
289
@@ -300,7 +300,7 @@ def gromov_wasserstein2(
300
300
.. note:: This function is backend-compatible and will work on arrays
301
301
from all compatible backends. But the algorithm uses the C++ CPU backend
302
302
which can lead to copy overhead on GPU arrays.
303
- .. note:: All computations in the conjugate gradient solver are done with
303
+ .. note:: All computations in the conditional gradient solver are done with
304
304
numpy to limit memory overhead.
305
305
.. note:: This function will cast the computed transport plan to the data
306
306
type of the provided input :math:`\mathbf{C}_1`. Casting to an integer
@@ -468,7 +468,7 @@ def fused_gromov_wasserstein(
468
468
.. note:: This function is backend-compatible and will work on arrays
469
469
from all compatible backends. But the algorithm uses the C++ CPU backend
470
470
which can lead to copy overhead on GPU arrays.
471
- .. note:: All computations in the conjugate gradient solver are done with
471
+ .. note:: All computations in the conditional gradient solver are done with
472
472
numpy to limit memory overhead.
473
473
.. note:: This function will cast the computed transport plan to the data
474
474
type of the provided input :math:`\mathbf{M}`. Casting to an integer
@@ -707,7 +707,7 @@ def fused_gromov_wasserstein2(
707
707
.. note:: This function is backend-compatible and will work on arrays
708
708
from all compatible backends. But the algorithm uses the C++ CPU backend
709
709
which can lead to copy overhead on GPU arrays.
710
- .. note:: All computations in the conjugate gradient solver are done with
710
+ .. note:: All computations in the conditional gradient solver are done with
711
711
numpy to limit memory overhead.
712
712
.. note:: This function will cast the computed transport plan to the data
713
713
type of the provided input :math:`\mathbf{M}`. Casting to an integer
0 commit comments