You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
*[Efficient Discrete Multi Marginal Optimal Transport Regularization](https://pythonot.github.io/auto_examples/others/plot_demd_gradient_minimize.html)[50].
51
52
*[Several backends](https://pythonot.github.io/quickstart.html#solving-ot-with-multiple-backends) for easy use of POT with [Pytorch](https://pytorch.org/)/[jax](https://github.com/google/jax)/[Numpy](https://numpy.org/)/[Cupy](https://cupy.dev/)/[Tensorflow](https://www.tensorflow.org/) arrays.
52
53
* Smooth Strongly Convex Nearest Brenier Potentials [58], with an extension to bounding potentials using [59].
@@ -358,4 +359,6 @@ distances between Gaussian distributions](https://hal.science/hal-03197398v2/fil
358
359
359
360
[66] Pooladian, Aram-Alexandre, and Jonathan Niles-Weed. [Entropic estimation of optimal transport maps](https://arxiv.org/pdf/2109.12004.pdf). arXiv preprint arXiv:2109.12004 (2021).
360
361
361
-
[67] Scetbon, M., Peyré, G. & Cuturi, M. (2022). [Linear-Time GromovWasserstein Distances using Low Rank Couplings and Costs](https://proceedings.mlr.press/v162/scetbon22b/scetbon22b.pdf). In International Conference on Machine Learning (ICML), 2022.
362
+
[67] Scetbon, M., Peyré, G. & Cuturi, M. (2022). [Linear-Time Gromov-Wasserstein Distances using Low Rank Couplings and Costs](https://proceedings.mlr.press/v162/scetbon22b/scetbon22b.pdf). In International Conference on Machine Learning (ICML), 2022.
363
+
364
+
[68] Chowdhury, S., Miller, D., & Needham, T. (2021). [Quantized gromov-wasserstein](https://link.springer.com/chapter/10.1007/978-3-030-86523-8_49). ECML PKDD 2021. Springer International Publishing.
Copy file name to clipboardExpand all lines: RELEASES.md
+1Lines changed: 1 addition & 0 deletions
Original file line number
Diff line number
Diff line change
@@ -3,6 +3,7 @@
3
3
## 0.9.4dev
4
4
5
5
#### New features
6
+
+ New quantized FGW solvers `ot.gromov.quantized_fused_gromov_wasserstein`, `ot.gromov.quantized_fused_gromov_wasserstein_samples` and `ot.gromov.quantized_fused_gromov_wasserstein_partitioned` (PR #603)
6
7
+`ot.gromov._gw.solve_gromov_linesearch` now has an argument to specify if the matrices are symmetric in which case the computation can be done faster (PR #607).
7
8
+ Continuous entropic mapping (PR #613)
8
9
+ New general unbalanced solvers for `ot.solve` and BFGS solver and illustrative example (PR #620)
0 commit comments