|
| 1 | +# -*- coding: utf-8 -*- |
| 2 | +""" |
| 3 | +======================================== |
| 4 | +Low rank Sinkhorn |
| 5 | +======================================== |
| 6 | +
|
| 7 | +This example illustrates the computation of Low Rank Sinkhorn [26]. |
| 8 | +
|
| 9 | +[65] Scetbon, M., Cuturi, M., & Peyré, G. (2021). |
| 10 | +"Low-rank Sinkhorn factorization". In International Conference on Machine Learning. |
| 11 | +""" |
| 12 | + |
| 13 | +# Author: Laurène David <laurene.david@ip-paris.fr> |
| 14 | +# |
| 15 | +# License: MIT License |
| 16 | +# |
| 17 | +# sphinx_gallery_thumbnail_number = 2 |
| 18 | + |
| 19 | +import numpy as np |
| 20 | +import matplotlib.pylab as pl |
| 21 | +import ot.plot |
| 22 | +from ot.datasets import make_1D_gauss as gauss |
| 23 | + |
| 24 | +############################################################################## |
| 25 | +# Generate data |
| 26 | +# ------------- |
| 27 | + |
| 28 | +#%% parameters |
| 29 | + |
| 30 | +n = 100 |
| 31 | +m = 120 |
| 32 | + |
| 33 | +# Gaussian distribution |
| 34 | +a = gauss(n, m=int(n / 3), s=25 / np.sqrt(2)) + 1.5 * gauss(n, m=int(5 * n / 6), s=15 / np.sqrt(2)) |
| 35 | +a = a / np.sum(a) |
| 36 | + |
| 37 | +b = 2 * gauss(m, m=int(m / 5), s=30 / np.sqrt(2)) + gauss(m, m=int(m / 2), s=35 / np.sqrt(2)) |
| 38 | +b = b / np.sum(b) |
| 39 | + |
| 40 | +# Source and target distribution |
| 41 | +X = np.arange(n).reshape(-1, 1) |
| 42 | +Y = np.arange(m).reshape(-1, 1) |
| 43 | + |
| 44 | + |
| 45 | +############################################################################## |
| 46 | +# Solve Low rank sinkhorn |
| 47 | +# ------------ |
| 48 | + |
| 49 | +#%% |
| 50 | +# Solve low rank sinkhorn |
| 51 | +Q, R, g, log = ot.lowrank_sinkhorn(X, Y, a, b, rank=10, init="random", gamma_init="rescale", rescale_cost=True, warn=False, log=True) |
| 52 | +P = log["lazy_plan"][:] |
| 53 | + |
| 54 | +ot.plot.plot1D_mat(a, b, P, 'OT matrix Low rank') |
| 55 | + |
| 56 | + |
| 57 | +############################################################################## |
| 58 | +# Sinkhorn vs Low Rank Sinkhorn |
| 59 | +# ----------------------- |
| 60 | +# Compare Sinkhorn and Low rank sinkhorn with different regularizations and ranks. |
| 61 | + |
| 62 | +#%% Sinkhorn |
| 63 | + |
| 64 | +# Compute cost matrix for sinkhorn OT |
| 65 | +M = ot.dist(X, Y) |
| 66 | +M = M / np.max(M) |
| 67 | + |
| 68 | +# Solve sinkhorn with different regularizations using ot.solve |
| 69 | +list_reg = [0.05, 0.005, 0.001] |
| 70 | +list_P_Sin = [] |
| 71 | + |
| 72 | +for reg in list_reg: |
| 73 | + P = ot.solve(M, a, b, reg=reg, max_iter=2000, tol=1e-8).plan |
| 74 | + list_P_Sin.append(P) |
| 75 | + |
| 76 | +#%% Low rank sinkhorn |
| 77 | + |
| 78 | +# Solve low rank sinkhorn with different ranks using ot.solve_sample |
| 79 | +list_rank = [3, 10, 50] |
| 80 | +list_P_LR = [] |
| 81 | + |
| 82 | +for rank in list_rank: |
| 83 | + P = ot.solve_sample(X, Y, a, b, method='lowrank', rank=rank).plan |
| 84 | + P = P[:] |
| 85 | + list_P_LR.append(P) |
| 86 | + |
| 87 | + |
| 88 | +#%% |
| 89 | + |
| 90 | +# Plot sinkhorn vs low rank sinkhorn |
| 91 | +pl.figure(1, figsize=(10, 4)) |
| 92 | + |
| 93 | +pl.subplot(1, 3, 1) |
| 94 | +pl.imshow(list_P_Sin[0], interpolation='nearest') |
| 95 | +pl.axis('off') |
| 96 | +pl.title('Sinkhorn (reg=0.05)') |
| 97 | + |
| 98 | +pl.subplot(1, 3, 2) |
| 99 | +pl.imshow(list_P_Sin[1], interpolation='nearest') |
| 100 | +pl.axis('off') |
| 101 | +pl.title('Sinkhorn (reg=0.005)') |
| 102 | + |
| 103 | +pl.subplot(1, 3, 3) |
| 104 | +pl.imshow(list_P_Sin[2], interpolation='nearest') |
| 105 | +pl.axis('off') |
| 106 | +pl.title('Sinkhorn (reg=0.001)') |
| 107 | +pl.show() |
| 108 | + |
| 109 | + |
| 110 | +#%% |
| 111 | + |
| 112 | +pl.figure(2, figsize=(10, 4)) |
| 113 | + |
| 114 | +pl.subplot(1, 3, 1) |
| 115 | +pl.imshow(list_P_LR[0], interpolation='nearest') |
| 116 | +pl.axis('off') |
| 117 | +pl.title('Low rank (rank=3)') |
| 118 | + |
| 119 | +pl.subplot(1, 3, 2) |
| 120 | +pl.imshow(list_P_LR[1], interpolation='nearest') |
| 121 | +pl.axis('off') |
| 122 | +pl.title('Low rank (rank=10)') |
| 123 | + |
| 124 | +pl.subplot(1, 3, 3) |
| 125 | +pl.imshow(list_P_LR[2], interpolation='nearest') |
| 126 | +pl.axis('off') |
| 127 | +pl.title('Low rank (rank=50)') |
| 128 | + |
| 129 | +pl.tight_layout() |
0 commit comments