@@ -309,7 +309,7 @@ def lowrank_sinkhorn(X_s, X_t, a=None, b=None, reg=0, rank=None, alpha=1e-10, re
309
309
init = "random" , reg_init = None , seed_init = None , gamma_init = "rescale" ,
310
310
numItermax = 2000 , stopThr = 1e-7 , warn = True , log = False ):
311
311
r"""
312
- Solve the entropic regularization optimal transport problem under low-nonnegative rank constraints
312
+ Solve the entropic regularization optimal transport problem under low-nonnegative rank constraints
313
313
on the couplings.
314
314
315
315
The function solves the following optimization problem:
@@ -343,18 +343,18 @@ def lowrank_sinkhorn(X_s, X_t, a=None, b=None, reg=0, rank=None, alpha=1e-10, re
343
343
rank : int, optional. Default is None. (>0)
344
344
Nonnegative rank of the OT plan. If None, min(ns, nt) is considered.
345
345
alpha : int, optional. Default is 1e-10. (>0 and <1/r)
346
- Lower bound for the weight vector g.
346
+ Lower bound for the weight vector g.
347
347
rescale_cost : bool, optional. Default is False
348
348
Rescale the low rank factorization of the sqeuclidean cost matrix
349
- init : str, optional. Default is 'random'.
349
+ init : str, optional. Default is 'random'.
350
350
Initialization strategy for the low rank couplings. 'random', 'trivial' or 'kmeans'
351
351
reg_init : float, optional. Default is None. (>0)
352
352
Regularization term for a 'kmeans' init. If None, 1 is considered.
353
353
seed_init : int, optional. Default is None. (>0)
354
354
Random state for a 'random' or 'kmeans' init strategy.
355
355
gamma_init : str, optional. Default is "rescale".
356
356
Initialization strategy for gamma. 'rescale', or 'theory'
357
- Gamma is a constant that scales the convergence criterion of the Mirror Descent
357
+ Gamma is a constant that scales the convergence criterion of the Mirror Descent
358
358
optimization scheme used to compute the low-rank couplings (Q, R and g)
359
359
numItermax : int, optional. Default is 2000.
360
360
Max number of iterations for the Dykstra algorithm
@@ -489,4 +489,4 @@ def lowrank_sinkhorn(X_s, X_t, a=None, b=None, reg=0, rank=None, alpha=1e-10, re
489
489
490
490
return Q , R , g , dict_log
491
491
492
- return Q , R , g
492
+ return Q , R , g
0 commit comments