|
262 | 262 | "metadata": {},
|
263 | 263 | "outputs": [],
|
264 | 264 | "source": [
|
265 |
| - "\n", |
266 | 265 | "import torch\n",
|
267 | 266 | "\n",
|
268 | 267 | "unet_url = \"https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/tutorial_generation_unet.pth\"\n",
|
|
327 | 326 | "scheduler.set_timesteps(num_inference_steps=1000)\n",
|
328 | 327 | "\n",
|
329 | 328 | "with torch.no_grad():\n",
|
330 |
| - " syn_images = inferer.sample(input_noise=noise, diffusion_model=unet, scheduler=scheduler, autoencoder_model=autoencoderkl)\n", |
| 329 | + " syn_images = inferer.sample(\n", |
| 330 | + " input_noise=noise, diffusion_model=unet, scheduler=scheduler, autoencoder_model=autoencoderkl\n", |
| 331 | + " )\n", |
331 | 332 | "\n",
|
332 | 333 | "# Plot 3 examples from the synthetic data\n",
|
333 | 334 | "fig, ax = plt.subplots(nrows=1, ncols=3)\n",
|
|
395 | 396 | " scheduler.set_timesteps(num_inference_steps=1000)\n",
|
396 | 397 | "\n",
|
397 | 398 | " with torch.no_grad():\n",
|
398 |
| - " syn_images = inferer.sample(input_noise=noise, diffusion_model=unet, scheduler=scheduler, autoencoder_model=autoencoderkl)\n", |
| 399 | + " syn_images = inferer.sample(\n", |
| 400 | + " input_noise=noise, diffusion_model=unet, scheduler=scheduler, autoencoder_model=autoencoderkl\n", |
| 401 | + " )\n", |
399 | 402 | "\n",
|
400 | 403 | " # Get the features for the real data\n",
|
401 | 404 | " real_eval_feats = get_features(real_images)\n",
|
|
0 commit comments