|
635 | 635 | "height": 1000
|
636 | 636 | }
|
637 | 637 | },
|
638 |
| - "outputs": [ |
639 |
| - { |
640 |
| - "output_type": "stream", |
641 |
| - "name": "stdout", |
642 |
| - "text": [ |
643 |
| - "----------\n", |
644 |
| - "epoch 1/600\n" |
645 |
| - ] |
646 |
| - }, |
647 |
| - { |
648 |
| - "output_type": "stream", |
649 |
| - "name": "stdout", |
650 |
| - "text": [ |
651 |
| - "1/16, train_loss: 0.6764\n", |
652 |
| - "2/16, train_loss: 0.6668\n", |
653 |
| - "3/16, train_loss: 0.6652\n", |
654 |
| - "4/16, train_loss: 0.6722\n", |
655 |
| - "5/16, train_loss: 0.6516\n", |
656 |
| - "6/16, train_loss: 0.6717\n", |
657 |
| - "7/16, train_loss: 0.6541\n", |
658 |
| - "8/16, train_loss: 0.6686\n", |
659 |
| - "9/16, train_loss: 0.6717\n", |
660 |
| - "10/16, train_loss: 0.6599\n", |
661 |
| - "11/16, train_loss: 0.6411\n", |
662 |
| - "12/16, train_loss: 0.6550\n", |
663 |
| - "13/16, train_loss: 0.6426\n", |
664 |
| - "14/16, train_loss: 0.6479\n", |
665 |
| - "15/16, train_loss: 0.6413\n", |
666 |
| - "16/16, train_loss: 0.6506\n", |
667 |
| - "epoch 1 average loss: 0.6586\n", |
668 |
| - "----------\n", |
669 |
| - "epoch 2/600\n", |
670 |
| - "1/16, train_loss: 0.6440\n", |
671 |
| - "2/16, train_loss: 0.6320\n", |
672 |
| - "3/16, train_loss: 0.6389\n", |
673 |
| - "4/16, train_loss: 0.6129\n", |
674 |
| - "5/16, train_loss: 0.6187\n", |
675 |
| - "6/16, train_loss: 0.6046\n", |
676 |
| - "7/16, train_loss: 0.6183\n", |
677 |
| - "8/16, train_loss: 0.6147\n", |
678 |
| - "9/16, train_loss: 0.6363\n", |
679 |
| - "10/16, train_loss: 0.6235\n", |
680 |
| - "11/16, train_loss: 0.6028\n" |
681 |
| - ] |
682 |
| - }, |
683 |
| - { |
684 |
| - "output_type": "error", |
685 |
| - "ename": "KeyboardInterrupt", |
686 |
| - "evalue": "ignored", |
687 |
| - "traceback": [ |
688 |
| - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
689 |
| - "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", |
690 |
| - "\u001b[0;32m<ipython-input-15-3e0802f8a779>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 32\u001b[0m \u001b[0moutputs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 33\u001b[0m \u001b[0mloss\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mloss_function\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0moutputs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabels\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 34\u001b[0;31m \u001b[0mloss\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbackward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 35\u001b[0m \u001b[0moptimizer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstep\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 36\u001b[0m \u001b[0mepoch_loss\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0mloss\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
691 |
| - "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/torch/_tensor.py\u001b[0m in \u001b[0;36mbackward\u001b[0;34m(self, gradient, retain_graph, create_graph, inputs)\u001b[0m\n\u001b[1;32m 305\u001b[0m \u001b[0mcreate_graph\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcreate_graph\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 306\u001b[0m inputs=inputs)\n\u001b[0;32m--> 307\u001b[0;31m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mautograd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbackward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgradient\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mretain_graph\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcreate_graph\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minputs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 308\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 309\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mregister_hook\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhook\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
692 |
| - "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/torch/autograd/__init__.py\u001b[0m in \u001b[0;36mbackward\u001b[0;34m(tensors, grad_tensors, retain_graph, create_graph, grad_variables, inputs)\u001b[0m\n\u001b[1;32m 154\u001b[0m Variable._execution_engine.run_backward(\n\u001b[1;32m 155\u001b[0m \u001b[0mtensors\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgrad_tensors_\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mretain_graph\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcreate_graph\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minputs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 156\u001b[0;31m allow_unreachable=True, accumulate_grad=True) # allow_unreachable flag\n\u001b[0m\u001b[1;32m 157\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 158\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", |
693 |
| - "\u001b[0;31mKeyboardInterrupt\u001b[0m: " |
694 |
| - ] |
695 |
| - } |
696 |
| - ], |
| 638 | + "outputs": [], |
697 | 639 | "source": [
|
698 | 640 | "max_epochs = 600\n",
|
699 | 641 | "val_interval = 10\n",
|
|
820 | 762 | "base_uri": "https://localhost:8080/"
|
821 | 763 | }
|
822 | 764 | },
|
823 |
| - "outputs": [ |
824 |
| - { |
825 |
| - "output_type": "stream", |
826 |
| - "name": "stdout", |
827 |
| - "text": [ |
828 |
| - "train completed, best_metric: -1.0000 at epoch: -1\n" |
829 |
| - ] |
830 |
| - } |
831 |
| - ], |
| 765 | + "outputs": [], |
832 | 766 | "source": [
|
833 | 767 | "print(\n",
|
834 | 768 | " f\"train completed, best_metric: {best_metric:.4f} \"\n",
|
|
0 commit comments