Skip to content

Commit 8302a72

Browse files
authored
Update to readme: GPU support (#98)
* Update to readme: GPU support * Update toc
1 parent 813cca5 commit 8302a72

File tree

1 file changed

+25
-32
lines changed

1 file changed

+25
-32
lines changed

README.md

Lines changed: 25 additions & 32 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11

2-
# Machine Learning Benchmarks
2+
# Machine Learning Benchmarks <!-- omit in toc -->
33

44
[![Build Status](https://dev.azure.com/daal/scikit-learn_bench/_apis/build/status/IntelPython.scikit-learn_bench?branchName=master)](https://dev.azure.com/daal/scikit-learn_bench/_build/latest?definitionId=8&branchName=master)
55

@@ -10,7 +10,7 @@ and algorithms. It currently supports the [scikit-learn](https://scikit-learn.or
1010
and [XGBoost](https://github.com/dmlc/xgboost) frameworks for commonly used
1111
[machine learning algorithms](#supported-algorithms).
1212

13-
## Follow us on Medium
13+
## Follow us on Medium <!-- omit in toc -->
1414

1515
We publish blogs on Medium, so [follow us](https://medium.com/intel-analytics-software/tagged/machine-learning) to learn tips and tricks for more efficient data analysis. Here are our latest blogs:
1616

@@ -28,13 +28,13 @@ We publish blogs on Medium, so [follow us](https://medium.com/intel-analytics-so
2828
- [Accelerate K-Means Clustering](https://medium.com/intel-analytics-software/accelerate-k-means-clustering-6385088788a1)
2929
- [Fast Gradient Boosting Tree Inference](https://medium.com/intel-analytics-software/fast-gradient-boosting-tree-inference-for-intel-xeon-processors-35756f174f55)
3030

31-
## Table of content
31+
## Table of content <!-- omit in toc -->
3232

3333
- [How to create conda environment for benchmarking](#how-to-create-conda-environment-for-benchmarking)
3434
- [Running Python benchmarks with runner script](#running-python-benchmarks-with-runner-script)
3535
- [Benchmark supported algorithms](#benchmark-supported-algorithms)
36-
- [Intel(R) Extension for Scikit-learn* support](#intelr-extension-for-scikit-learn-support)
37-
- [Algorithms parameters](#algorithms-parameters)
36+
- [Scikit-learn benchmakrs](#scikit-learn-benchmakrs)
37+
- [Algorithm parameters](#algorithm-parameters)
3838

3939
## How to create conda environment for benchmarking
4040

@@ -100,37 +100,30 @@ The configuration of benchmarks allows you to select the frameworks to run, sele
100100

101101
## Benchmark supported algorithms
102102

103-
| algorithm | benchmark name | sklearn | daal4py | cuml | xgboost |
104-
|---|---|---|---|---|---|
105-
|**[DBSCAN](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html)**|dbscan|:white_check_mark:|:white_check_mark:|:white_check_mark:|:x:|
106-
|**[RandomForestClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html)**|df_clfs|:white_check_mark:|:white_check_mark:|:white_check_mark:|:x:|
107-
|**[RandomForestRegressor](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html)**|df_regr|:white_check_mark:|:white_check_mark:|:white_check_mark:|:x:|
108-
|**[pairwise_distances](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise_distances.html)**|distances|:white_check_mark:|:white_check_mark:|:x:|:x:|
109-
|**[KMeans](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html)**|kmeans|:white_check_mark:|:white_check_mark:|:white_check_mark:|:x:|
110-
|**[KNeighborsClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html)**|knn_clsf|:white_check_mark:|:x:|:white_check_mark:|:x:|
111-
|**[LinearRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html)**|linear|:white_check_mark:|:white_check_mark:|:white_check_mark:|:x:|
112-
|**[LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html)**|log_reg|:white_check_mark:|:white_check_mark:|:white_check_mark:|:x:|
113-
|**[PCA](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html)**|pca|:white_check_mark:|:white_check_mark:|:white_check_mark:|:x:|
114-
|**[Ridge](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html)**|ridge|:white_check_mark:|:white_check_mark:|:white_check_mark:|:x:|
115-
|**[SVM](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html)**|svm|:white_check_mark:|:white_check_mark:|:white_check_mark:|:x:|
116-
|**[train_test_split](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html)**|train_test_split|:white_check_mark:|:x:|:white_check_mark:|:x:|
117-
|**[GradientBoostingClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html)**|gbt|:x:|:x:|:x:|:white_check_mark:|
118-
|**[GradientBoostingRegressor](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html)**|gbt|:x:|:x:|:x:|:white_check_mark:|
119-
120-
## Intel(R) Extension for Scikit-learn support
103+
| algorithm | benchmark name | sklearn (CPU) | sklearn (GPU) | daal4py | cuml | xgboost |
104+
|---|---|---|---|---|---|---|
105+
|**[DBSCAN](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html)**|dbscan|:white_check_mark:|:white_check_mark:|:white_check_mark:|:white_check_mark:|:x:|
106+
|**[RandomForestClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html)**|df_clfs|:white_check_mark:|:x:|:white_check_mark:|:white_check_mark:|:x:|
107+
|**[RandomForestRegressor](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html)**|df_regr|:white_check_mark:|:x:|:white_check_mark:|:white_check_mark:|:x:|
108+
|**[pairwise_distances](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise_distances.html)**|distances|:white_check_mark:|:x:|:white_check_mark:|:x:|:x:|
109+
|**[KMeans](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html)**|kmeans|:white_check_mark:|:white_check_mark:|:white_check_mark:|:white_check_mark:|:x:|
110+
|**[KNeighborsClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html)**|knn_clsf|:white_check_mark:|:x:|:x:|:white_check_mark:|:x:|
111+
|**[LinearRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html)**|linear|:white_check_mark:|:white_check_mark:|:white_check_mark:|:white_check_mark:|:x:|
112+
|**[LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html)**|log_reg|:white_check_mark:|:white_check_mark:|:white_check_mark:|:white_check_mark:|:x:|
113+
|**[PCA](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html)**|pca|:white_check_mark:|:x:|:white_check_mark:|:white_check_mark:|:x:|
114+
|**[Ridge](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html)**|ridge|:white_check_mark:|:x:|:white_check_mark:|:white_check_mark:|:x:|
115+
|**[SVM](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html)**|svm|:white_check_mark:|:x:|:white_check_mark:|:white_check_mark:|:x:|
116+
|**[train_test_split](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html)**|train_test_split|:white_check_mark:|:x:|:x:|:white_check_mark:|:x:|
117+
|**[GradientBoostingClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html)**|gbt|:x:|:x:|:x:|:x:|:white_check_mark:|
118+
|**[GradientBoostingRegressor](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html)**|gbt|:x:|:x:|:x:|:x:|:white_check_mark:|
119+
120+
### Scikit-learn benchmakrs
121121

122122
When you run scikit-learn benchmarks on CPU, [Intel(R) Extension for Scikit-learn](https://github.com/intel/scikit-learn-intelex) is used by default. Use the ``--no-intel-optimized`` option to run the benchmarks without the extension.
123123

124-
The following benchmarks have a GPU support:
124+
For the algorithms with both CPU and GPU support, you may use the same [configuration file](https://github.com/IntelPython/scikit-learn_bench/blob/master/configs/skl_xpu_config.json) to run the scikit-learn benchmarks on CPU and GPU.
125125

126-
- dbscan
127-
- kmeans
128-
- linear
129-
- log_reg
130-
131-
You may use the [configuration file for these benchmarks](https://github.com/IntelPython/scikit-learn_bench/blob/master/configs/skl_xpu_config.json) to run them on both CPU and GPU.
132-
133-
## Algorithms parameters
126+
## Algorithm parameters
134127

135128
You can launch benchmarks for each algorithm separately.
136129
To do this, go to the directory with the benchmark:

0 commit comments

Comments
 (0)