1
1
2
- # Machine Learning Benchmarks
2
+ # Machine Learning Benchmarks <!-- omit in toc -->
3
3
4
4
[ ![ Build Status] ( https://dev.azure.com/daal/scikit-learn_bench/_apis/build/status/IntelPython.scikit-learn_bench?branchName=master )] ( https://dev.azure.com/daal/scikit-learn_bench/_build/latest?definitionId=8&branchName=master )
5
5
@@ -10,7 +10,7 @@ and algorithms. It currently supports the [scikit-learn](https://scikit-learn.or
10
10
and [ XGBoost] ( https://github.com/dmlc/xgboost ) frameworks for commonly used
11
11
[ machine learning algorithms] ( #supported-algorithms ) .
12
12
13
- ## Follow us on Medium
13
+ ## Follow us on Medium <!-- omit in toc -->
14
14
15
15
We publish blogs on Medium, so [ follow us] ( https://medium.com/intel-analytics-software/tagged/machine-learning ) to learn tips and tricks for more efficient data analysis. Here are our latest blogs:
16
16
@@ -28,13 +28,13 @@ We publish blogs on Medium, so [follow us](https://medium.com/intel-analytics-so
28
28
- [ Accelerate K-Means Clustering] ( https://medium.com/intel-analytics-software/accelerate-k-means-clustering-6385088788a1 )
29
29
- [ Fast Gradient Boosting Tree Inference] ( https://medium.com/intel-analytics-software/fast-gradient-boosting-tree-inference-for-intel-xeon-processors-35756f174f55 )
30
30
31
- ## Table of content
31
+ ## Table of content <!-- omit in toc -->
32
32
33
33
- [ How to create conda environment for benchmarking] ( #how-to-create-conda-environment-for-benchmarking )
34
34
- [ Running Python benchmarks with runner script] ( #running-python-benchmarks-with-runner-script )
35
35
- [ Benchmark supported algorithms] ( #benchmark-supported-algorithms )
36
- - [ Intel(R) Extension for Scikit-learn* support ] ( #intelr-extension-for- scikit-learn-support )
37
- - [ Algorithms parameters] ( #algorithms -parameters )
36
+ - [ Scikit-learn benchmakrs ] ( #scikit-learn-benchmakrs )
37
+ - [ Algorithm parameters] ( #algorithm -parameters )
38
38
39
39
## How to create conda environment for benchmarking
40
40
@@ -100,37 +100,30 @@ The configuration of benchmarks allows you to select the frameworks to run, sele
100
100
101
101
## Benchmark supported algorithms
102
102
103
- | algorithm | benchmark name | sklearn | daal4py | cuml | xgboost |
104
- | ---| ---| ---| ---| ---| ---|
105
- | ** [ DBSCAN] ( https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html ) ** | dbscan| :white_check_mark : | :white_check_mark : | :white_check_mark : | :x : |
106
- | ** [ RandomForestClassifier] ( https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html ) ** | df_clfs| :white_check_mark : | :white_check_mark : | :white_check_mark : | :x : |
107
- | ** [ RandomForestRegressor] ( https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html ) ** | df_regr| :white_check_mark : | :white_check_mark : | :white_check_mark : | :x : |
108
- | ** [ pairwise_distances] ( https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise_distances.html ) ** | distances| :white_check_mark : | :white_check_mark : | :x : | :x : |
109
- | ** [ KMeans] ( https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html ) ** | kmeans| :white_check_mark : | :white_check_mark : | :white_check_mark : | :x : |
110
- | ** [ KNeighborsClassifier] ( https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html ) ** | knn_clsf| :white_check_mark : | :x : | :white_check_mark : | :x : |
111
- | ** [ LinearRegression] ( https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html ) ** | linear| :white_check_mark : | :white_check_mark : | :white_check_mark : | :x : |
112
- | ** [ LogisticRegression] ( https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html ) ** | log_reg| :white_check_mark : | :white_check_mark : | :white_check_mark : | :x : |
113
- | ** [ PCA] ( https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html ) ** | pca| :white_check_mark : | :white_check_mark : | :white_check_mark : | :x : |
114
- | ** [ Ridge] ( https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html ) ** | ridge| :white_check_mark : | :white_check_mark : | :white_check_mark : | :x : |
115
- | ** [ SVM] ( https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html ) ** | svm| :white_check_mark : | :white_check_mark : | :white_check_mark : | :x : |
116
- | ** [ train_test_split] ( https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html ) ** | train_test_split| :white_check_mark : | :x : | :white_check_mark : | :x : |
117
- | ** [ GradientBoostingClassifier] ( https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html ) ** | gbt| :x : | :x : | :x : | :white_check_mark : |
118
- | ** [ GradientBoostingRegressor] ( https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html ) ** | gbt| :x : | :x : | :x : | :white_check_mark : |
119
-
120
- ## Intel(R) Extension for Scikit-learn support
103
+ | algorithm | benchmark name | sklearn (CPU) | sklearn (GPU) | daal4py | cuml | xgboost |
104
+ | ---| ---| ---| ---| ---| ---| --- |
105
+ | ** [ DBSCAN] ( https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html ) ** | dbscan| :white_check_mark : | :white_check_mark : | :white_check_mark : | :white_check_mark : | : x :|
106
+ | ** [ RandomForestClassifier] ( https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html ) ** | df_clfs| :white_check_mark : | :x : | : white_check_mark :| :white_check_mark : | :x : |
107
+ | ** [ RandomForestRegressor] ( https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html ) ** | df_regr| :white_check_mark : | :x : | : white_check_mark :| :white_check_mark : | :x : |
108
+ | ** [ pairwise_distances] ( https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise_distances.html ) ** | distances| :white_check_mark : | :x : | : white_check_mark :| :x : | :x : |
109
+ | ** [ KMeans] ( https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html ) ** | kmeans| :white_check_mark : | :white_check_mark : | :white_check_mark : | :white_check_mark : | : x :|
110
+ | ** [ KNeighborsClassifier] ( https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html ) ** | knn_clsf| :white_check_mark : | :x : | :x : | : white_check_mark :| :x : |
111
+ | ** [ LinearRegression] ( https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html ) ** | linear| :white_check_mark : | :white_check_mark : | :white_check_mark : | :white_check_mark : | : x :|
112
+ | ** [ LogisticRegression] ( https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html ) ** | log_reg| :white_check_mark : | :white_check_mark : | :white_check_mark : | :white_check_mark : | : x :|
113
+ | ** [ PCA] ( https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html ) ** | pca| :white_check_mark : | :x : | : white_check_mark :| :white_check_mark : | :x : |
114
+ | ** [ Ridge] ( https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html ) ** | ridge| :white_check_mark : | :x : | : white_check_mark :| :white_check_mark : | :x : |
115
+ | ** [ SVM] ( https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html ) ** | svm| :white_check_mark : | :x : | : white_check_mark :| :white_check_mark : | :x : |
116
+ | ** [ train_test_split] ( https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html ) ** | train_test_split| :white_check_mark : | :x : | :x : | : white_check_mark :| :x : |
117
+ | ** [ GradientBoostingClassifier] ( https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html ) ** | gbt| :x : | :x : | :x : | :x : | : white_check_mark :|
118
+ | ** [ GradientBoostingRegressor] ( https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html ) ** | gbt| :x : | :x : | :x : | :x : | : white_check_mark :|
119
+
120
+ ### Scikit-learn benchmakrs
121
121
122
122
When you run scikit-learn benchmarks on CPU, [ Intel(R) Extension for Scikit-learn] ( https://github.com/intel/scikit-learn-intelex ) is used by default. Use the `` --no-intel-optimized `` option to run the benchmarks without the extension.
123
123
124
- The following benchmarks have a GPU support:
124
+ For the algorithms with both CPU and GPU support, you may use the same [ configuration file ] ( https://github.com/IntelPython/scikit-learn_bench/blob/master/configs/skl_xpu_config.json ) to run the scikit-learn benchmarks on CPU and GPU.
125
125
126
- - dbscan
127
- - kmeans
128
- - linear
129
- - log_reg
130
-
131
- You may use the [ configuration file for these benchmarks] ( https://github.com/IntelPython/scikit-learn_bench/blob/master/configs/skl_xpu_config.json ) to run them on both CPU and GPU.
132
-
133
- ## Algorithms parameters
126
+ ## Algorithm parameters
134
127
135
128
You can launch benchmarks for each algorithm separately.
136
129
To do this, go to the directory with the benchmark:
0 commit comments