12
12
</ script >
13
13
14
14
< meta name ="viewport " content ="width=device-width, initial-scale=1.0 " />
15
- < title > dpnp.dpnp_iface_arraycreation — Data Parallel Extension for NumPy 0.13.1dev2+9.g31049176fe documentation</ title >
15
+ < title > dpnp.dpnp_iface_arraycreation — Data Parallel Extension for NumPy 0.13.1dev2+13.gf799994819 documentation</ title >
16
16
< link rel ="stylesheet " type ="text/css " href ="../../_static/pygments.css?v=fa44fd50 " />
17
17
< link rel ="stylesheet " type ="text/css " href ="../../_static/css/theme.css?v=19f00094 " />
18
18
23
23
24
24
< script src ="../../_static/jquery.js?v=5d32c60e "> </ script >
25
25
< script src ="../../_static/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c "> </ script >
26
- < script src ="../../_static/documentation_options.js?v=32d03a00 "> </ script >
26
+ < script src ="../../_static/documentation_options.js?v=aea84fb1 "> </ script >
27
27
< script src ="../../_static/doctools.js?v=888ff710 "> </ script >
28
28
< script src ="../../_static/sphinx_highlight.js?v=dc90522c "> </ script >
29
29
< script src ="../../_static/js/theme.js "> </ script >
43
43
Data Parallel Extension for NumPy
44
44
</ a >
45
45
< div class ="version ">
46
- 0.13.1dev2+9.g31049176fe
46
+ 0.13.1dev2+13.gf799994819
47
47
</ div >
48
48
< div role ="search ">
49
49
< form id ="rtd-search-form " class ="wy-form " action ="../../search.html " method ="get ">
@@ -142,6 +142,7 @@ <h1>Source code for dpnp.dpnp_iface_arraycreation</h1><div class="highlight"><pr
142
142
< span class ="n "> dpnp_geomspace</ span > < span class ="p "> ,</ span >
143
143
< span class ="n "> dpnp_linspace</ span > < span class ="p "> ,</ span >
144
144
< span class ="n "> dpnp_logspace</ span > < span class ="p "> ,</ span >
145
+ < span class ="n "> dpnp_nd_grid</ span > < span class ="p "> ,</ span >
145
146
< span class ="p "> )</ span >
146
147
147
148
< span class ="n "> __all__</ span > < span class ="o "> =</ span > < span class ="p "> [</ span >
@@ -1617,6 +1618,24 @@ <h1>Source code for dpnp.dpnp_iface_arraycreation</h1><div class="highlight"><pr
1617
1618
1618
1619
< span class ="sd "> For full documentation refer to :obj:`numpy.mgrid`.</ span >
1619
1620
1621
+ < span class ="sd "> Parameters</ span >
1622
+ < span class ="sd "> ----------</ span >
1623
+ < span class ="sd "> device : {None, string, SyclDevice, SyclQueue}, optional</ span >
1624
+ < span class ="sd "> An array API concept of device where the output array is created.</ span >
1625
+ < span class ="sd "> The `device` can be ``None`` (the default), an OneAPI filter selector string,</ span >
1626
+ < span class ="sd "> an instance of :class:`dpctl.SyclDevice` corresponding to a non-partitioned SYCL device,</ span >
1627
+ < span class ="sd "> an instance of :class:`dpctl.SyclQueue`, or a `Device` object returned by</ span >
1628
+ < span class ="sd "> :obj:`dpnp.dpnp_array.dpnp_array.device` property.</ span >
1629
+ < span class ="sd "> usm_type : {"device", "shared", "host"}, optional</ span >
1630
+ < span class ="sd "> The type of SYCL USM allocation for the output array.</ span >
1631
+ < span class ="sd "> sycl_queue : {None, SyclQueue}, optional</ span >
1632
+ < span class ="sd "> A SYCL queue to use for output array allocation and copying.</ span >
1633
+
1634
+ < span class ="sd "> Returns</ span >
1635
+ < span class ="sd "> -------</ span >
1636
+ < span class ="sd "> out : one dpnp.ndarray or tuple of dpnp.ndarray</ span >
1637
+ < span class ="sd "> Returns one array of grid indices, grid.shape = (len(dimensions),) + tuple(dimensions).</ span >
1638
+
1620
1639
< span class ="sd "> Examples</ span >
1621
1640
< span class ="sd "> --------</ span >
1622
1641
< span class ="sd "> >>> import dpnp as np</ span >
@@ -1631,13 +1650,31 @@ <h1>Source code for dpnp.dpnp_iface_arraycreation</h1><div class="highlight"><pr
1631
1650
< span class ="sd "> [0, 1, 2, 3, 4],</ span >
1632
1651
< span class ="sd "> [0, 1, 2, 3, 4],</ span >
1633
1652
< span class ="sd "> [0, 1, 2, 3, 4]]])</ span >
1634
- < span class ="sd "> >>> np.mgrid[-1:1:5j]</ span >
1653
+
1654
+ < span class ="sd "> >>> x = np.mgrid[-1:1:5j]</ span >
1655
+ < span class ="sd "> >>> x</ span >
1635
1656
< span class ="sd "> array([-1. , -0.5, 0. , 0.5, 1. ])</ span >
1657
+ < span class ="sd "> >>> x.usm_type</ span >
1658
+ < span class ="sd "> 'device'</ span >
1659
+
1660
+ < span class ="sd "> >>> y = np.mgrid(usm_type="host")[-1:1:5j]</ span >
1661
+ < span class ="sd "> >>> y</ span >
1662
+ < span class ="sd "> array([-1. , -0.5, 0. , 0.5, 1. ])</ span >
1663
+ < span class ="sd "> >>> x.usm_type</ span >
1664
+ < span class ="sd "> 'host'</ span >
1636
1665
1637
1666
< span class ="sd "> """</ span >
1638
1667
1639
1668
< span class ="k "> def</ span > < span class ="fm "> __getitem__</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> key</ span > < span class ="p "> ):</ span >
1640
- < span class ="k "> return</ span > < span class ="n "> dpnp</ span > < span class ="o "> .</ span > < span class ="n "> array</ span > < span class ="p "> (</ span > < span class ="n "> numpy</ span > < span class ="o "> .</ span > < span class ="n "> mgrid</ span > < span class ="p "> [</ span > < span class ="n "> key</ span > < span class ="p "> ])</ span >
1669
+ < span class ="k "> return</ span > < span class ="n "> dpnp_nd_grid</ span > < span class ="p "> (</ span > < span class ="n "> sparse</ span > < span class ="o "> =</ span > < span class ="kc "> False</ span > < span class ="p "> )[</ span > < span class ="n "> key</ span > < span class ="p "> ]</ span >
1670
+
1671
+ < span class ="k "> def</ span > < span class ="fm "> __call__</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> device</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span > < span class ="n "> usm_type</ span > < span class ="o "> =</ span > < span class ="s2 "> "device"</ span > < span class ="p "> ,</ span > < span class ="n "> sycl_queue</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ):</ span >
1672
+ < span class ="k "> return</ span > < span class ="n "> dpnp_nd_grid</ span > < span class ="p "> (</ span >
1673
+ < span class ="n "> sparse</ span > < span class ="o "> =</ span > < span class ="kc "> False</ span > < span class ="p "> ,</ span >
1674
+ < span class ="n "> device</ span > < span class ="o "> =</ span > < span class ="n "> device</ span > < span class ="p "> ,</ span >
1675
+ < span class ="n "> usm_type</ span > < span class ="o "> =</ span > < span class ="n "> usm_type</ span > < span class ="p "> ,</ span >
1676
+ < span class ="n "> sycl_queue</ span > < span class ="o "> =</ span > < span class ="n "> sycl_queue</ span > < span class ="p "> ,</ span >
1677
+ < span class ="p "> )</ span >
1641
1678
1642
1679
1643
1680
< span class ="n "> mgrid</ span > < span class ="o "> =</ span > < span class ="n "> MGridClass</ span > < span class ="p "> ()</ span >
@@ -1649,23 +1686,56 @@ <h1>Source code for dpnp.dpnp_iface_arraycreation</h1><div class="highlight"><pr
1649
1686
1650
1687
< span class ="sd "> For full documentation refer to :obj:`numpy.ogrid`.</ span >
1651
1688
1689
+ < span class ="sd "> Parameters</ span >
1690
+ < span class ="sd "> ----------</ span >
1691
+ < span class ="sd "> device : {None, string, SyclDevice, SyclQueue}, optional</ span >
1692
+ < span class ="sd "> An array API concept of device where the output array is created.</ span >
1693
+ < span class ="sd "> The `device` can be ``None`` (the default), an OneAPI filter selector string,</ span >
1694
+ < span class ="sd "> an instance of :class:`dpctl.SyclDevice` corresponding to a non-partitioned SYCL device,</ span >
1695
+ < span class ="sd "> an instance of :class:`dpctl.SyclQueue`, or a `Device` object returned by</ span >
1696
+ < span class ="sd "> :obj:`dpnp.dpnp_array.dpnp_array.device` property.</ span >
1697
+ < span class ="sd "> usm_type : {"device", "shared", "host"}, optional</ span >
1698
+ < span class ="sd "> The type of SYCL USM allocation for the output array.</ span >
1699
+ < span class ="sd "> sycl_queue : {None, SyclQueue}, optional</ span >
1700
+ < span class ="sd "> A SYCL queue to use for output array allocation and copying.</ span >
1701
+
1702
+ < span class ="sd "> Returns</ span >
1703
+ < span class ="sd "> -------</ span >
1704
+ < span class ="sd "> out : one dpnp.ndarray or tuple of dpnp.ndarray</ span >
1705
+ < span class ="sd "> Returns a tuple of arrays, with grid[i].shape = (1, ..., 1, dimensions[i], 1, ..., 1)</ span >
1706
+ < span class ="sd "> with dimensions[i] in the ith place.</ span >
1707
+
1652
1708
< span class ="sd "> Examples</ span >
1653
1709
< span class ="sd "> --------</ span >
1654
1710
< span class ="sd "> >>> import dpnp as np</ span >
1655
- < span class ="sd "> >>> from numpy import ogrid</ span >
1656
- < span class ="sd "> >>> ogrid[-1:1:5j]</ span >
1657
- < span class ="sd "> array([-1. , -0.5, 0. , 0.5, 1. ])</ span >
1658
- < span class ="sd "> >>> ogrid[0:5,0:5]</ span >
1711
+ < span class ="sd "> >>> np.ogrid[0:5, 0:5]</ span >
1659
1712
< span class ="sd "> [array([[0],</ span >
1660
1713
< span class ="sd "> [1],</ span >
1661
1714
< span class ="sd "> [2],</ span >
1662
1715
< span class ="sd "> [3],</ span >
1663
1716
< span class ="sd "> [4]]), array([[0, 1, 2, 3, 4]])]</ span >
1664
1717
1718
+ < span class ="sd "> >>> x = np.ogrid[-1:1:5j]</ span >
1719
+ < span class ="sd "> >>> x</ span >
1720
+ < span class ="sd "> array([-1. , -0.5, 0. , 0.5, 1. ])</ span >
1721
+ < span class ="sd "> >>> x.usm_type</ span >
1722
+ < span class ="sd "> 'device'</ span >
1723
+
1724
+ < span class ="sd "> >>> y = np.ogrid(usm_type="host")[-1:1:5j]</ span >
1725
+ < span class ="sd "> >>> y</ span >
1726
+ < span class ="sd "> array([-1. , -0.5, 0. , 0.5, 1. ])</ span >
1727
+ < span class ="sd "> >>> x.usm_type</ span >
1728
+ < span class ="sd "> 'host'</ span >
1729
+
1665
1730
< span class ="sd "> """</ span >
1666
1731
1667
1732
< span class ="k "> def</ span > < span class ="fm "> __getitem__</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> key</ span > < span class ="p "> ):</ span >
1668
- < span class ="k "> return</ span > < span class ="n "> dpnp</ span > < span class ="o "> .</ span > < span class ="n "> array</ span > < span class ="p "> (</ span > < span class ="n "> numpy</ span > < span class ="o "> .</ span > < span class ="n "> ogrid</ span > < span class ="p "> [</ span > < span class ="n "> key</ span > < span class ="p "> ])</ span >
1733
+ < span class ="k "> return</ span > < span class ="n "> dpnp_nd_grid</ span > < span class ="p "> (</ span > < span class ="n "> sparse</ span > < span class ="o "> =</ span > < span class ="kc "> True</ span > < span class ="p "> )[</ span > < span class ="n "> key</ span > < span class ="p "> ]</ span >
1734
+
1735
+ < span class ="k "> def</ span > < span class ="fm "> __call__</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> device</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span > < span class ="n "> usm_type</ span > < span class ="o "> =</ span > < span class ="s2 "> "device"</ span > < span class ="p "> ,</ span > < span class ="n "> sycl_queue</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ):</ span >
1736
+ < span class ="k "> return</ span > < span class ="n "> dpnp_nd_grid</ span > < span class ="p "> (</ span >
1737
+ < span class ="n "> sparse</ span > < span class ="o "> =</ span > < span class ="kc "> True</ span > < span class ="p "> ,</ span > < span class ="n "> device</ span > < span class ="o "> =</ span > < span class ="n "> device</ span > < span class ="p "> ,</ span > < span class ="n "> usm_type</ span > < span class ="o "> =</ span > < span class ="n "> usm_type</ span > < span class ="p "> ,</ span > < span class ="n "> sycl_queue</ span > < span class ="o "> =</ span > < span class ="n "> sycl_queue</ span >
1738
+ < span class ="p "> )</ span >
1669
1739
1670
1740
1671
1741
< span class ="n "> ogrid</ span > < span class ="o "> =</ span > < span class ="n "> OGridClass</ span > < span class ="p "> ()</ span >
0 commit comments