|
1 |
| -import unittest |
2 |
| - |
3 |
| -import numpy |
4 |
| -import pytest |
5 |
| - |
6 |
| -import dpnp as cupy |
7 |
| -from tests.third_party.cupy import testing |
8 |
| - |
9 |
| - |
10 |
| -def _generate_type_routines_input(xp, dtype, obj_type): |
11 |
| - dtype = numpy.dtype(dtype) |
12 |
| - if obj_type == "dtype": |
13 |
| - return dtype |
14 |
| - if obj_type == "specifier": |
15 |
| - return str(dtype) |
16 |
| - if obj_type == "scalar": |
17 |
| - return dtype.type(3) |
18 |
| - if obj_type == "array": |
19 |
| - return xp.zeros(3, dtype=dtype) |
20 |
| - if obj_type == "primitive": |
21 |
| - return type(dtype.type(3).tolist()) |
22 |
| - assert False |
23 |
| - |
24 |
| - |
25 |
| -@testing.parameterize( |
26 |
| - *testing.product( |
27 |
| - { |
28 |
| - "obj_type": ["dtype", "specifier", "scalar", "array", "primitive"], |
29 |
| - } |
30 |
| - ) |
31 |
| -) |
32 |
| -class TestCanCast(unittest.TestCase): |
33 |
| - @testing.for_all_dtypes_combination(names=("from_dtype", "to_dtype")) |
34 |
| - @testing.numpy_cupy_equal() |
35 |
| - def test_can_cast(self, xp, from_dtype, to_dtype): |
36 |
| - if self.obj_type == "scalar": |
37 |
| - pytest.skip("to be aligned with NEP-50") |
38 |
| - |
39 |
| - from_obj = _generate_type_routines_input(xp, from_dtype, self.obj_type) |
40 |
| - |
41 |
| - ret = xp.can_cast(from_obj, to_dtype) |
42 |
| - assert isinstance(ret, bool) |
43 |
| - return ret |
44 |
| - |
45 |
| - |
46 |
| -@pytest.mark.skip("dpnp.common_type() is not implemented yet") |
47 |
| -class TestCommonType(unittest.TestCase): |
48 |
| - @testing.numpy_cupy_equal() |
49 |
| - def test_common_type_empty(self, xp): |
50 |
| - ret = xp.common_type() |
51 |
| - assert type(ret) == type |
52 |
| - return ret |
53 |
| - |
54 |
| - @testing.for_all_dtypes(no_bool=True) |
55 |
| - @testing.numpy_cupy_equal() |
56 |
| - def test_common_type_single_argument(self, xp, dtype): |
57 |
| - array = _generate_type_routines_input(xp, dtype, "array") |
58 |
| - ret = xp.common_type(array) |
59 |
| - assert type(ret) == type |
60 |
| - return ret |
61 |
| - |
62 |
| - @testing.for_all_dtypes_combination( |
63 |
| - names=("dtype1", "dtype2"), no_bool=True |
64 |
| - ) |
65 |
| - @testing.numpy_cupy_equal() |
66 |
| - def test_common_type_two_arguments(self, xp, dtype1, dtype2): |
67 |
| - array1 = _generate_type_routines_input(xp, dtype1, "array") |
68 |
| - array2 = _generate_type_routines_input(xp, dtype2, "array") |
69 |
| - ret = xp.common_type(array1, array2) |
70 |
| - assert type(ret) == type |
71 |
| - return ret |
72 |
| - |
73 |
| - @testing.for_all_dtypes() |
74 |
| - def test_common_type_bool(self, dtype): |
75 |
| - for xp in (numpy, cupy): |
76 |
| - array1 = _generate_type_routines_input(xp, dtype, "array") |
77 |
| - array2 = _generate_type_routines_input(xp, "bool_", "array") |
78 |
| - with pytest.raises(TypeError): |
79 |
| - xp.common_type(array1, array2) |
80 |
| - |
81 |
| - |
82 |
| -@testing.parameterize( |
83 |
| - *testing.product( |
84 |
| - { |
85 |
| - "obj_type1": ["dtype", "specifier", "scalar", "array", "primitive"], |
86 |
| - "obj_type2": ["dtype", "specifier", "scalar", "array", "primitive"], |
87 |
| - } |
88 |
| - ) |
89 |
| -) |
90 |
| -class TestResultType(unittest.TestCase): |
91 |
| - @testing.for_all_dtypes_combination(names=("dtype1", "dtype2")) |
92 |
| - @testing.numpy_cupy_equal() |
93 |
| - def test_result_type(self, xp, dtype1, dtype2): |
94 |
| - if "scalar" in {self.obj_type1, self.obj_type2}: |
95 |
| - pytest.skip("to be aligned with NEP-50") |
96 |
| - |
97 |
| - input1 = _generate_type_routines_input(xp, dtype1, self.obj_type1) |
98 |
| - |
99 |
| - input2 = _generate_type_routines_input(xp, dtype2, self.obj_type2) |
100 |
| - ret = xp.result_type(input1, input2) |
101 |
| - assert isinstance(ret, numpy.dtype) |
102 |
| - return ret |
| 1 | +import unittest |
| 2 | + |
| 3 | +import numpy |
| 4 | +import pytest |
| 5 | + |
| 6 | +import dpnp as cupy |
| 7 | +from tests.third_party.cupy import testing |
| 8 | + |
| 9 | + |
| 10 | +def _generate_type_routines_input(xp, dtype, obj_type): |
| 11 | + dtype = numpy.dtype(dtype) |
| 12 | + if obj_type == "dtype": |
| 13 | + return dtype |
| 14 | + if obj_type == "specifier": |
| 15 | + return str(dtype) |
| 16 | + if obj_type == "scalar": |
| 17 | + return dtype.type(3) |
| 18 | + if obj_type == "array": |
| 19 | + return xp.zeros(3, dtype=dtype) |
| 20 | + if obj_type == "primitive": |
| 21 | + return type(dtype.type(3).tolist()) |
| 22 | + assert False |
| 23 | + |
| 24 | + |
| 25 | +@testing.parameterize( |
| 26 | + *testing.product( |
| 27 | + { |
| 28 | + "obj_type": ["dtype", "specifier", "scalar", "array", "primitive"], |
| 29 | + } |
| 30 | + ) |
| 31 | +) |
| 32 | +class TestCanCast(unittest.TestCase): |
| 33 | + @testing.for_all_dtypes_combination(names=("from_dtype", "to_dtype")) |
| 34 | + @testing.numpy_cupy_equal() |
| 35 | + def test_can_cast(self, xp, from_dtype, to_dtype): |
| 36 | + if self.obj_type == "scalar": |
| 37 | + pytest.skip("to be aligned with NEP-50") |
| 38 | + |
| 39 | + from_obj = _generate_type_routines_input(xp, from_dtype, self.obj_type) |
| 40 | + |
| 41 | + ret = xp.can_cast(from_obj, to_dtype) |
| 42 | + assert isinstance(ret, bool) |
| 43 | + return ret |
| 44 | + |
| 45 | + |
| 46 | +@pytest.mark.skip("dpnp.common_type() is not implemented yet") |
| 47 | +class TestCommonType(unittest.TestCase): |
| 48 | + @testing.numpy_cupy_equal() |
| 49 | + def test_common_type_empty(self, xp): |
| 50 | + ret = xp.common_type() |
| 51 | + assert type(ret) == type |
| 52 | + return ret |
| 53 | + |
| 54 | + @testing.for_all_dtypes(no_bool=True) |
| 55 | + @testing.numpy_cupy_equal() |
| 56 | + def test_common_type_single_argument(self, xp, dtype): |
| 57 | + array = _generate_type_routines_input(xp, dtype, "array") |
| 58 | + ret = xp.common_type(array) |
| 59 | + assert type(ret) == type |
| 60 | + return ret |
| 61 | + |
| 62 | + @testing.for_all_dtypes_combination( |
| 63 | + names=("dtype1", "dtype2"), no_bool=True |
| 64 | + ) |
| 65 | + @testing.numpy_cupy_equal() |
| 66 | + def test_common_type_two_arguments(self, xp, dtype1, dtype2): |
| 67 | + array1 = _generate_type_routines_input(xp, dtype1, "array") |
| 68 | + array2 = _generate_type_routines_input(xp, dtype2, "array") |
| 69 | + ret = xp.common_type(array1, array2) |
| 70 | + assert type(ret) == type |
| 71 | + return ret |
| 72 | + |
| 73 | + @testing.for_all_dtypes() |
| 74 | + def test_common_type_bool(self, dtype): |
| 75 | + for xp in (numpy, cupy): |
| 76 | + array1 = _generate_type_routines_input(xp, dtype, "array") |
| 77 | + array2 = _generate_type_routines_input(xp, "bool_", "array") |
| 78 | + with pytest.raises(TypeError): |
| 79 | + xp.common_type(array1, array2) |
| 80 | + |
| 81 | + |
| 82 | +@testing.parameterize( |
| 83 | + *testing.product( |
| 84 | + { |
| 85 | + "obj_type1": ["dtype", "specifier", "scalar", "array", "primitive"], |
| 86 | + "obj_type2": ["dtype", "specifier", "scalar", "array", "primitive"], |
| 87 | + } |
| 88 | + ) |
| 89 | +) |
| 90 | +# TODO: Temporary skipping the test, until Internal CI is updated with |
| 91 | +# recent changed in dpctl regarding dpt.result_type function |
| 92 | +@pytest.mark.skip("Temporary skipping the test") |
| 93 | +class TestResultType(unittest.TestCase): |
| 94 | + @testing.for_all_dtypes_combination(names=("dtype1", "dtype2")) |
| 95 | + @testing.numpy_cupy_equal() |
| 96 | + def test_result_type(self, xp, dtype1, dtype2): |
| 97 | + if "scalar" in {self.obj_type1, self.obj_type2}: |
| 98 | + pytest.skip("to be aligned with NEP-50") |
| 99 | + |
| 100 | + input1 = _generate_type_routines_input(xp, dtype1, self.obj_type1) |
| 101 | + |
| 102 | + input2 = _generate_type_routines_input(xp, dtype2, self.obj_type2) |
| 103 | + ret = xp.result_type(input1, input2) |
| 104 | + assert isinstance(ret, numpy.dtype) |
| 105 | + return ret |
0 commit comments