|
| 1 | +//***************************************************************************** |
| 2 | +// Copyright (c) 2023, Intel Corporation |
| 3 | +// All rights reserved. |
| 4 | +// |
| 5 | +// Redistribution and use in source and binary forms, with or without |
| 6 | +// modification, are permitted provided that the following conditions are met: |
| 7 | +// - Redistributions of source code must retain the above copyright notice, |
| 8 | +// this list of conditions and the following disclaimer. |
| 9 | +// - Redistributions in binary form must reproduce the above copyright notice, |
| 10 | +// this list of conditions and the following disclaimer in the documentation |
| 11 | +// and/or other materials provided with the distribution. |
| 12 | +// |
| 13 | +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 14 | +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 15 | +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 16 | +// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE |
| 17 | +// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 18 | +// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 19 | +// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 20 | +// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 21 | +// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 22 | +// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF |
| 23 | +// THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | +//***************************************************************************** |
| 25 | + |
| 26 | +#include <pybind11/pybind11.h> |
| 27 | + |
| 28 | +// dpctl tensor headers |
| 29 | +#include "utils/memory_overlap.hpp" |
| 30 | +#include "utils/type_utils.hpp" |
| 31 | + |
| 32 | +#include "common_helpers.hpp" |
| 33 | +#include "gesv.hpp" |
| 34 | +#include "linalg_exceptions.hpp" |
| 35 | +#include "types_matrix.hpp" |
| 36 | + |
| 37 | +#include "dpnp_utils.hpp" |
| 38 | + |
| 39 | +namespace dpnp |
| 40 | +{ |
| 41 | +namespace backend |
| 42 | +{ |
| 43 | +namespace ext |
| 44 | +{ |
| 45 | +namespace lapack |
| 46 | +{ |
| 47 | +namespace mkl_lapack = oneapi::mkl::lapack; |
| 48 | +namespace py = pybind11; |
| 49 | +namespace type_utils = dpctl::tensor::type_utils; |
| 50 | + |
| 51 | +typedef sycl::event (*gesv_impl_fn_ptr_t)(sycl::queue, |
| 52 | + const std::int64_t, |
| 53 | + const std::int64_t, |
| 54 | + char *, |
| 55 | + std::int64_t, |
| 56 | + char *, |
| 57 | + std::int64_t, |
| 58 | + std::vector<sycl::event> &, |
| 59 | + const std::vector<sycl::event> &); |
| 60 | + |
| 61 | +static gesv_impl_fn_ptr_t gesv_dispatch_vector[dpctl_td_ns::num_types]; |
| 62 | + |
| 63 | +template <typename T> |
| 64 | +static sycl::event gesv_impl(sycl::queue exec_q, |
| 65 | + const std::int64_t n, |
| 66 | + const std::int64_t nrhs, |
| 67 | + char *in_a, |
| 68 | + std::int64_t lda, |
| 69 | + char *in_b, |
| 70 | + std::int64_t ldb, |
| 71 | + std::vector<sycl::event> &host_task_events, |
| 72 | + const std::vector<sycl::event> &depends) |
| 73 | +{ |
| 74 | + type_utils::validate_type_for_device<T>(exec_q); |
| 75 | + |
| 76 | + T *a = reinterpret_cast<T *>(in_a); |
| 77 | + T *b = reinterpret_cast<T *>(in_b); |
| 78 | + |
| 79 | + const std::int64_t scratchpad_size = |
| 80 | + mkl_lapack::gesv_scratchpad_size<T>(exec_q, n, nrhs, lda, ldb); |
| 81 | + T *scratchpad = nullptr; |
| 82 | + |
| 83 | + std::int64_t *ipiv = nullptr; |
| 84 | + |
| 85 | + std::stringstream error_msg; |
| 86 | + std::int64_t info = 0; |
| 87 | + bool sycl_exception_caught = false; |
| 88 | + |
| 89 | + sycl::event gesv_event; |
| 90 | + try { |
| 91 | + scratchpad = sycl::malloc_device<T>(scratchpad_size, exec_q); |
| 92 | + ipiv = sycl::malloc_device<std::int64_t>(n, exec_q); |
| 93 | + |
| 94 | + gesv_event = mkl_lapack::gesv( |
| 95 | + exec_q, |
| 96 | + n, // The order of the matrix A (0 ≤ n). |
| 97 | + nrhs, // The number of right-hand sides B (0 ≤ nrhs). |
| 98 | + a, // Pointer to the square coefficient matrix A (n x n). |
| 99 | + lda, // The leading dimension of a, must be at least max(1, n). |
| 100 | + ipiv, // The pivot indices that define the permutation matrix P; |
| 101 | + // row i of the matrix was interchanged with row ipiv(i), |
| 102 | + // must be at least max(1, n). |
| 103 | + b, // Pointer to the right hand side matrix B (n x nrhs). |
| 104 | + ldb, // The leading dimension of b, must be at least max(1, n). |
| 105 | + scratchpad, // Pointer to scratchpad memory to be used by MKL |
| 106 | + // routine for storing intermediate results. |
| 107 | + scratchpad_size, depends); |
| 108 | + } catch (mkl_lapack::exception const &e) { |
| 109 | + info = e.info(); |
| 110 | + |
| 111 | + if (info < 0) { |
| 112 | + error_msg << "Parameter number " << -info |
| 113 | + << " had an illegal value."; |
| 114 | + } |
| 115 | + else if (info > 0) { |
| 116 | + T host_U; |
| 117 | + exec_q.memcpy(&host_U, &a[(info - 1) * lda + info - 1], sizeof(T)) |
| 118 | + .wait(); |
| 119 | + |
| 120 | + using ThresholdType = typename helper::value_type_of<T>::type; |
| 121 | + |
| 122 | + const auto threshold = |
| 123 | + std::numeric_limits<ThresholdType>::epsilon() * 100; |
| 124 | + if (std::abs(host_U) < threshold) { |
| 125 | + sycl::free(scratchpad, exec_q); |
| 126 | + throw LinAlgError("The input coefficient matrix is singular."); |
| 127 | + } |
| 128 | + else { |
| 129 | + error_msg << "Unexpected MKL exception caught during gesv() " |
| 130 | + "call:\nreason: " |
| 131 | + << e.what() << "\ninfo: " << e.info(); |
| 132 | + } |
| 133 | + } |
| 134 | + else if (info == scratchpad_size && e.detail() != 0) { |
| 135 | + error_msg |
| 136 | + << "Insufficient scratchpad size. Required size is at least " |
| 137 | + << e.detail(); |
| 138 | + } |
| 139 | + else { |
| 140 | + error_msg << "Unexpected MKL exception caught during gesv() " |
| 141 | + "call:\nreason: " |
| 142 | + << e.what() << "\ninfo: " << e.info(); |
| 143 | + } |
| 144 | + } catch (sycl::exception const &e) { |
| 145 | + error_msg << "Unexpected SYCL exception caught during gesv() call:\n" |
| 146 | + << e.what(); |
| 147 | + sycl_exception_caught = true; |
| 148 | + } |
| 149 | + |
| 150 | + if (info != 0 || sycl_exception_caught) // an unexpected error occurs |
| 151 | + { |
| 152 | + if (scratchpad != nullptr) { |
| 153 | + sycl::free(scratchpad, exec_q); |
| 154 | + } |
| 155 | + if (ipiv != nullptr) { |
| 156 | + sycl::free(ipiv, exec_q); |
| 157 | + } |
| 158 | + throw std::runtime_error(error_msg.str()); |
| 159 | + } |
| 160 | + |
| 161 | + sycl::event clean_up_event = exec_q.submit([&](sycl::handler &cgh) { |
| 162 | + cgh.depends_on(gesv_event); |
| 163 | + auto ctx = exec_q.get_context(); |
| 164 | + cgh.host_task([ctx, scratchpad, ipiv]() { |
| 165 | + sycl::free(scratchpad, ctx); |
| 166 | + sycl::free(ipiv, ctx); |
| 167 | + }); |
| 168 | + }); |
| 169 | + host_task_events.push_back(clean_up_event); |
| 170 | + |
| 171 | + return gesv_event; |
| 172 | +} |
| 173 | + |
| 174 | +std::pair<sycl::event, sycl::event> |
| 175 | + gesv(sycl::queue exec_q, |
| 176 | + dpctl::tensor::usm_ndarray coeff_matrix, |
| 177 | + dpctl::tensor::usm_ndarray dependent_vals, |
| 178 | + const std::vector<sycl::event> &depends) |
| 179 | +{ |
| 180 | + const int coeff_matrix_nd = coeff_matrix.get_ndim(); |
| 181 | + const int dependent_vals_nd = dependent_vals.get_ndim(); |
| 182 | + |
| 183 | + if (coeff_matrix_nd != 2) { |
| 184 | + throw py::value_error("The coefficient matrix has ndim=" + |
| 185 | + std::to_string(coeff_matrix_nd) + |
| 186 | + ", but a 2-dimensional array is expected."); |
| 187 | + } |
| 188 | + |
| 189 | + if (dependent_vals_nd > 2) { |
| 190 | + throw py::value_error( |
| 191 | + "The dependent values array has ndim=" + |
| 192 | + std::to_string(dependent_vals_nd) + |
| 193 | + ", but a 1-dimensional or a 2-dimensional array is expected."); |
| 194 | + } |
| 195 | + |
| 196 | + const py::ssize_t *coeff_matrix_shape = coeff_matrix.get_shape_raw(); |
| 197 | + const py::ssize_t *dependent_vals_shape = dependent_vals.get_shape_raw(); |
| 198 | + |
| 199 | + if (coeff_matrix_shape[0] != coeff_matrix_shape[1]) { |
| 200 | + throw py::value_error("The coefficient matrix must be square," |
| 201 | + " but got a shape of (" + |
| 202 | + std::to_string(coeff_matrix_shape[0]) + ", " + |
| 203 | + std::to_string(coeff_matrix_shape[1]) + ")."); |
| 204 | + } |
| 205 | + |
| 206 | + // check compatibility of execution queue and allocation queue |
| 207 | + if (!dpctl::utils::queues_are_compatible(exec_q, |
| 208 | + {coeff_matrix, dependent_vals})) |
| 209 | + { |
| 210 | + throw py::value_error( |
| 211 | + "Execution queue is not compatible with allocation queues"); |
| 212 | + } |
| 213 | + |
| 214 | + auto const &overlap = dpctl::tensor::overlap::MemoryOverlap(); |
| 215 | + if (overlap(coeff_matrix, dependent_vals)) { |
| 216 | + throw py::value_error( |
| 217 | + "The arrays of coefficients and dependent variables " |
| 218 | + "are overlapping segments of memory"); |
| 219 | + } |
| 220 | + |
| 221 | + bool is_coeff_matrix_f_contig = coeff_matrix.is_f_contiguous(); |
| 222 | + if (!is_coeff_matrix_f_contig) { |
| 223 | + throw py::value_error("The coefficient matrix " |
| 224 | + "must be F-contiguous"); |
| 225 | + } |
| 226 | + |
| 227 | + bool is_dependent_vals_f_contig = dependent_vals.is_f_contiguous(); |
| 228 | + if (!is_dependent_vals_f_contig) { |
| 229 | + throw py::value_error("The array of dependent variables " |
| 230 | + "must be F-contiguous"); |
| 231 | + } |
| 232 | + |
| 233 | + auto array_types = dpctl_td_ns::usm_ndarray_types(); |
| 234 | + int coeff_matrix_type_id = |
| 235 | + array_types.typenum_to_lookup_id(coeff_matrix.get_typenum()); |
| 236 | + int dependent_vals_type_id = |
| 237 | + array_types.typenum_to_lookup_id(dependent_vals.get_typenum()); |
| 238 | + |
| 239 | + if (coeff_matrix_type_id != dependent_vals_type_id) { |
| 240 | + throw py::value_error("The types of the coefficient matrix and " |
| 241 | + "dependent variables are mismatched"); |
| 242 | + } |
| 243 | + |
| 244 | + gesv_impl_fn_ptr_t gesv_fn = gesv_dispatch_vector[coeff_matrix_type_id]; |
| 245 | + if (gesv_fn == nullptr) { |
| 246 | + throw py::value_error( |
| 247 | + "No gesv implementation defined for the provided type " |
| 248 | + "of the coefficient matrix."); |
| 249 | + } |
| 250 | + |
| 251 | + char *coeff_matrix_data = coeff_matrix.get_data(); |
| 252 | + char *dependent_vals_data = dependent_vals.get_data(); |
| 253 | + |
| 254 | + const std::int64_t n = coeff_matrix_shape[0]; |
| 255 | + const std::int64_t m = dependent_vals_shape[0]; |
| 256 | + const std::int64_t nrhs = |
| 257 | + (dependent_vals_nd > 1) ? dependent_vals_shape[1] : 1; |
| 258 | + |
| 259 | + const std::int64_t lda = std::max<size_t>(1UL, n); |
| 260 | + const std::int64_t ldb = std::max<size_t>(1UL, m); |
| 261 | + |
| 262 | + std::vector<sycl::event> host_task_events; |
| 263 | + sycl::event gesv_ev = |
| 264 | + gesv_fn(exec_q, n, nrhs, coeff_matrix_data, lda, dependent_vals_data, |
| 265 | + ldb, host_task_events, depends); |
| 266 | + |
| 267 | + sycl::event args_ev = dpctl::utils::keep_args_alive( |
| 268 | + exec_q, {coeff_matrix, dependent_vals}, host_task_events); |
| 269 | + |
| 270 | + return std::make_pair(args_ev, gesv_ev); |
| 271 | +} |
| 272 | + |
| 273 | +template <typename fnT, typename T> |
| 274 | +struct GesvContigFactory |
| 275 | +{ |
| 276 | + fnT get() |
| 277 | + { |
| 278 | + if constexpr (types::GesvTypePairSupportFactory<T>::is_defined) { |
| 279 | + return gesv_impl<T>; |
| 280 | + } |
| 281 | + else { |
| 282 | + return nullptr; |
| 283 | + } |
| 284 | + } |
| 285 | +}; |
| 286 | + |
| 287 | +void init_gesv_dispatch_vector(void) |
| 288 | +{ |
| 289 | + dpctl_td_ns::DispatchVectorBuilder<gesv_impl_fn_ptr_t, GesvContigFactory, |
| 290 | + dpctl_td_ns::num_types> |
| 291 | + contig; |
| 292 | + contig.populate_dispatch_vector(gesv_dispatch_vector); |
| 293 | +} |
| 294 | +} // namespace lapack |
| 295 | +} // namespace ext |
| 296 | +} // namespace backend |
| 297 | +} // namespace dpnp |
0 commit comments