@@ -954,7 +954,7 @@ def histogramdd(sample, bins=10, range=None, weights=None, density=False):
954
954
weights belonging to the samples falling into each bin.
955
955
956
956
Default: ``None``
957
- density : { bool} , optional
957
+ density : bool, optional
958
958
If ``False``, the default, returns the number of samples in each bin.
959
959
If ``True``, returns the probability *density* function at the bin,
960
960
``bin_count / sample_count / bin_volume``.
@@ -963,10 +963,10 @@ def histogramdd(sample, bins=10, range=None, weights=None, density=False):
963
963
964
964
Returns
965
965
-------
966
- H : { dpnp.ndarray}
966
+ H : dpnp.ndarray
967
967
The multidimensional histogram of sample x. See density and weights
968
968
for the different possible semantics.
969
- edges : { list of dpnp.ndarray}
969
+ edges : list of { dpnp.ndarray or usm_ndarray }
970
970
A list of D arrays describing the bin edges for each dimension.
971
971
972
972
See Also
@@ -1039,4 +1039,8 @@ def histogramdd(sample, bins=10, range=None, weights=None, density=False):
1039
1039
n = n / dpnp .reshape (diff , shape = shape )
1040
1040
n /= s
1041
1041
1042
+ for i , b in enumerate (bins ):
1043
+ if dpnp .is_supported_array_type (b ):
1044
+ bin_edges_view_list [i ] = b
1045
+
1042
1046
return n , bin_edges_view_list
0 commit comments