@@ -229,97 +229,101 @@ def test_ptp_nan_imag(self, xp, dtype):
229
229
@testing .for_all_dtypes ()
230
230
@testing .numpy_cupy_allclose (contiguous_check = False )
231
231
def test_argmax_all (self , xp , dtype ):
232
- a = testing .shaped_random ((2 , 3 ), xp , dtype )
232
+ a = testing .shaped_random ((2 , 3 ), xp , dtype , order = self . order )
233
233
return a .argmax ()
234
234
235
235
@testing .for_all_dtypes ()
236
236
@testing .numpy_cupy_allclose (contiguous_check = False )
237
237
def test_argmax_axis_large (self , xp , dtype ):
238
- a = testing .shaped_random ((3 , 1000 ), xp , dtype )
238
+ a = testing .shaped_random ((3 , 1000 ), xp , dtype , order = self . order )
239
239
return a .argmax (axis = 0 )
240
240
241
241
@testing .for_all_dtypes ()
242
242
@testing .numpy_cupy_allclose (contiguous_check = False )
243
243
def test_argmax_axis0 (self , xp , dtype ):
244
- a = testing .shaped_random ((2 , 3 , 4 ), xp , dtype )
244
+ a = testing .shaped_random ((2 , 3 , 4 ), xp , dtype , order = self . order )
245
245
return a .argmax (axis = 0 )
246
246
247
247
@testing .for_all_dtypes ()
248
248
@testing .numpy_cupy_allclose (contiguous_check = False )
249
249
def test_argmax_axis1 (self , xp , dtype ):
250
- a = testing .shaped_random ((2 , 3 , 4 ), xp , dtype )
250
+ a = testing .shaped_random ((2 , 3 , 4 ), xp , dtype , order = self . order )
251
251
return a .argmax (axis = 1 )
252
252
253
253
@testing .for_all_dtypes ()
254
254
@testing .numpy_cupy_allclose (contiguous_check = False )
255
255
def test_argmax_axis2 (self , xp , dtype ):
256
- a = testing .shaped_random ((2 , 3 , 4 ), xp , dtype )
256
+ a = testing .shaped_random ((2 , 3 , 4 ), xp , dtype , order = self . order )
257
257
return a .argmax (axis = 2 )
258
258
259
259
@testing .for_float_dtypes ()
260
260
@testing .numpy_cupy_allclose (contiguous_check = False )
261
261
def test_argmax_nan (self , xp , dtype ):
262
- a = xp .array ([float ("nan" ), 1 , - 1 ], dtype )
262
+ a = xp .array ([float ("nan" ), 1 , - 1 ], dtype , order = self . order )
263
263
return a .argmax ()
264
264
265
265
@testing .for_complex_dtypes ()
266
266
@testing .numpy_cupy_allclose (contiguous_check = False )
267
267
def test_argmax_nan_real (self , xp , dtype ):
268
- a = xp .array ([float ("nan" ), 1 , - 1 ], dtype )
268
+ a = xp .array ([float ("nan" ), 1 , - 1 ], dtype , order = self . order )
269
269
return a .argmax ()
270
270
271
271
@testing .for_complex_dtypes ()
272
272
@testing .numpy_cupy_allclose (contiguous_check = False )
273
273
def test_argmax_nan_imag (self , xp , dtype ):
274
- a = xp .array ([float ("nan" ) * 1.0j , 1.0j , - 1.0j ], dtype )
274
+ a = xp .array (
275
+ [float ("nan" ) * 1.0j , 1.0j , - 1.0j ], dtype , order = self .order
276
+ )
275
277
return a .argmax ()
276
278
277
279
@testing .for_all_dtypes ()
278
280
@testing .numpy_cupy_allclose (contiguous_check = False )
279
281
def test_argmin_all (self , xp , dtype ):
280
- a = testing .shaped_random ((2 , 3 ), xp , dtype )
282
+ a = testing .shaped_random ((2 , 3 ), xp , dtype , order = self . order )
281
283
return a .argmin ()
282
284
283
285
@testing .for_all_dtypes ()
284
286
@testing .numpy_cupy_allclose (contiguous_check = False )
285
287
def test_argmin_axis_large (self , xp , dtype ):
286
- a = testing .shaped_random ((3 , 1000 ), xp , dtype )
288
+ a = testing .shaped_random ((3 , 1000 ), xp , dtype , order = self . order )
287
289
return a .argmin (axis = 0 )
288
290
289
291
@testing .for_all_dtypes ()
290
292
@testing .numpy_cupy_allclose (contiguous_check = False )
291
293
def test_argmin_axis0 (self , xp , dtype ):
292
- a = testing .shaped_random ((2 , 3 , 4 ), xp , dtype )
294
+ a = testing .shaped_random ((2 , 3 , 4 ), xp , dtype , order = self . order )
293
295
return a .argmin (axis = 0 )
294
296
295
297
@testing .for_all_dtypes ()
296
298
@testing .numpy_cupy_allclose (contiguous_check = False )
297
299
def test_argmin_axis1 (self , xp , dtype ):
298
- a = testing .shaped_random ((2 , 3 , 4 ), xp , dtype )
300
+ a = testing .shaped_random ((2 , 3 , 4 ), xp , dtype , order = self . order )
299
301
return a .argmin (axis = 1 )
300
302
301
303
@testing .for_all_dtypes ()
302
304
@testing .numpy_cupy_allclose (contiguous_check = False )
303
305
def test_argmin_axis2 (self , xp , dtype ):
304
- a = testing .shaped_random ((2 , 3 , 4 ), xp , dtype )
306
+ a = testing .shaped_random ((2 , 3 , 4 ), xp , dtype , order = self . order )
305
307
return a .argmin (axis = 2 )
306
308
307
309
@testing .for_float_dtypes ()
308
310
@testing .numpy_cupy_allclose (contiguous_check = False )
309
311
def test_argmin_nan (self , xp , dtype ):
310
- a = xp .array ([float ("nan" ), 1 , - 1 ], dtype )
312
+ a = xp .array ([float ("nan" ), 1 , - 1 ], dtype , order = self . order )
311
313
return a .argmin ()
312
314
313
315
@testing .for_complex_dtypes ()
314
316
@testing .numpy_cupy_allclose (contiguous_check = False )
315
317
def test_argmin_nan_real (self , xp , dtype ):
316
- a = xp .array ([float ("nan" ), 1 , - 1 ], dtype )
318
+ a = xp .array ([float ("nan" ), 1 , - 1 ], dtype , order = self . order )
317
319
return a .argmin ()
318
320
319
321
@testing .for_complex_dtypes ()
320
322
@testing .numpy_cupy_allclose (contiguous_check = False )
321
323
def test_argmin_nan_imag (self , xp , dtype ):
322
- a = xp .array ([float ("nan" ) * 1.0j , 1.0j , - 1.0j ], dtype )
324
+ a = xp .array (
325
+ [float ("nan" ) * 1.0j , 1.0j , - 1.0j ], dtype , order = self .order
326
+ )
323
327
return a .argmin ()
324
328
325
329
0 commit comments