|
18 | 18 |
|
19 | 19 | import numpy as np
|
20 | 20 | import pytest
|
| 21 | +from numpy.testing import assert_allclose |
21 | 22 |
|
22 | 23 | import dpctl.tensor as dpt
|
23 | 24 | from dpctl.tests.helper import get_queue_or_skip, skip_if_dtype_not_supported
|
24 | 25 |
|
| 26 | +_no_complex_dtypes = [ |
| 27 | + "?", |
| 28 | + "i1", |
| 29 | + "u1", |
| 30 | + "i2", |
| 31 | + "u2", |
| 32 | + "i4", |
| 33 | + "u4", |
| 34 | + "i8", |
| 35 | + "u8", |
| 36 | + "f2", |
| 37 | + "f4", |
| 38 | + "f8", |
| 39 | +] |
| 40 | + |
| 41 | + |
| 42 | +_all_dtypes = _no_complex_dtypes + [ |
| 43 | + "c8", |
| 44 | + "c16", |
| 45 | +] |
| 46 | + |
25 | 47 |
|
26 | 48 | def test_max_min_axis():
|
27 | 49 | get_queue_or_skip()
|
@@ -234,3 +256,123 @@ def test_reduction_arg_validation():
|
234 | 256 | dpt.max(x)
|
235 | 257 | with pytest.raises(ValueError):
|
236 | 258 | dpt.argmax(x)
|
| 259 | + |
| 260 | + |
| 261 | +@pytest.mark.parametrize("arg_dtype", _no_complex_dtypes[1:]) |
| 262 | +def test_logsumexp_arg_dtype_default_output_dtype_matrix(arg_dtype): |
| 263 | + q = get_queue_or_skip() |
| 264 | + skip_if_dtype_not_supported(arg_dtype, q) |
| 265 | + |
| 266 | + m = dpt.ones(100, dtype=arg_dtype) |
| 267 | + r = dpt.logsumexp(m) |
| 268 | + |
| 269 | + assert isinstance(r, dpt.usm_ndarray) |
| 270 | + assert r.dtype.kind == "f" |
| 271 | + tol = dpt.finfo(r.dtype).resolution |
| 272 | + assert_allclose( |
| 273 | + dpt.asnumpy(r), |
| 274 | + np.logaddexp.reduce(dpt.asnumpy(m), dtype=r.dtype), |
| 275 | + rtol=tol, |
| 276 | + atol=tol, |
| 277 | + ) |
| 278 | + |
| 279 | + |
| 280 | +def test_logsumexp_empty(): |
| 281 | + get_queue_or_skip() |
| 282 | + x = dpt.empty((0,), dtype="f4") |
| 283 | + y = dpt.logsumexp(x) |
| 284 | + assert y.shape == tuple() |
| 285 | + assert y == -dpt.inf |
| 286 | + |
| 287 | + |
| 288 | +def test_logsumexp_axis(): |
| 289 | + get_queue_or_skip() |
| 290 | + |
| 291 | + m = dpt.ones((3, 4, 5, 6, 7), dtype="f4") |
| 292 | + s = dpt.logsumexp(m, axis=(1, 2, -1)) |
| 293 | + |
| 294 | + assert isinstance(s, dpt.usm_ndarray) |
| 295 | + assert s.shape == (3, 6) |
| 296 | + tol = dpt.finfo(s.dtype).resolution |
| 297 | + assert_allclose( |
| 298 | + dpt.asnumpy(s), |
| 299 | + np.logaddexp.reduce(dpt.asnumpy(m), axis=(1, 2, -1), dtype=s.dtype), |
| 300 | + rtol=tol, |
| 301 | + atol=tol, |
| 302 | + ) |
| 303 | + |
| 304 | + |
| 305 | +@pytest.mark.parametrize("arg_dtype", _no_complex_dtypes[1:]) |
| 306 | +@pytest.mark.parametrize("out_dtype", _all_dtypes[1:]) |
| 307 | +def test_logsumexp_arg_out_dtype_matrix(arg_dtype, out_dtype): |
| 308 | + q = get_queue_or_skip() |
| 309 | + skip_if_dtype_not_supported(arg_dtype, q) |
| 310 | + skip_if_dtype_not_supported(out_dtype, q) |
| 311 | + |
| 312 | + m = dpt.ones(100, dtype=arg_dtype) |
| 313 | + r = dpt.logsumexp(m, dtype=out_dtype) |
| 314 | + |
| 315 | + assert isinstance(r, dpt.usm_ndarray) |
| 316 | + assert r.dtype == dpt.dtype(out_dtype) |
| 317 | + |
| 318 | + |
| 319 | +def test_logsumexp_keepdims(): |
| 320 | + get_queue_or_skip() |
| 321 | + |
| 322 | + m = dpt.ones((3, 4, 5, 6, 7), dtype="i4") |
| 323 | + s = dpt.logsumexp(m, axis=(1, 2, -1), keepdims=True) |
| 324 | + |
| 325 | + assert isinstance(s, dpt.usm_ndarray) |
| 326 | + assert s.shape == (3, 1, 1, 6, 1) |
| 327 | + |
| 328 | + |
| 329 | +def test_logsumexp_scalar(): |
| 330 | + get_queue_or_skip() |
| 331 | + |
| 332 | + m = dpt.ones(()) |
| 333 | + s = dpt.logsumexp(m) |
| 334 | + |
| 335 | + assert isinstance(s, dpt.usm_ndarray) |
| 336 | + assert m.sycl_queue == s.sycl_queue |
| 337 | + assert s.shape == () |
| 338 | + |
| 339 | + |
| 340 | +@pytest.mark.parametrize("arg_dtype", _no_complex_dtypes[1:]) |
| 341 | +def test_hypot_arg_dtype_default_output_dtype_matrix(arg_dtype): |
| 342 | + q = get_queue_or_skip() |
| 343 | + skip_if_dtype_not_supported(arg_dtype, q) |
| 344 | + |
| 345 | + m = dpt.ones(100, dtype=arg_dtype) |
| 346 | + r = dpt.reduce_hypot(m) |
| 347 | + |
| 348 | + assert isinstance(r, dpt.usm_ndarray) |
| 349 | + assert r.dtype.kind == "f" |
| 350 | + tol = dpt.finfo(r.dtype).resolution |
| 351 | + assert_allclose( |
| 352 | + dpt.asnumpy(r), |
| 353 | + np.hypot.reduce(dpt.asnumpy(m), dtype=r.dtype), |
| 354 | + rtol=tol, |
| 355 | + atol=tol, |
| 356 | + ) |
| 357 | + |
| 358 | + |
| 359 | +def test_hypot_empty(): |
| 360 | + get_queue_or_skip() |
| 361 | + x = dpt.empty((0,), dtype="f4") |
| 362 | + y = dpt.reduce_hypot(x) |
| 363 | + assert y.shape == tuple() |
| 364 | + assert y == 0 |
| 365 | + |
| 366 | + |
| 367 | +@pytest.mark.parametrize("arg_dtype", _no_complex_dtypes[1:]) |
| 368 | +@pytest.mark.parametrize("out_dtype", _all_dtypes[1:]) |
| 369 | +def test_hypot_arg_out_dtype_matrix(arg_dtype, out_dtype): |
| 370 | + q = get_queue_or_skip() |
| 371 | + skip_if_dtype_not_supported(arg_dtype, q) |
| 372 | + skip_if_dtype_not_supported(out_dtype, q) |
| 373 | + |
| 374 | + m = dpt.ones(100, dtype=arg_dtype) |
| 375 | + r = dpt.reduce_hypot(m, dtype=out_dtype) |
| 376 | + |
| 377 | + assert isinstance(r, dpt.usm_ndarray) |
| 378 | + assert r.dtype == dpt.dtype(out_dtype) |
0 commit comments