|
| 1 | +# Data Parallel Control (dpctl) |
| 2 | +# |
| 3 | +# Copyright 2020-2023 Intel Corporation |
| 4 | +# |
| 5 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 6 | +# you may not use this file except in compliance with the License. |
| 7 | +# You may obtain a copy of the License at |
| 8 | +# |
| 9 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | +# |
| 11 | +# Unless required by applicable law or agreed to in writing, software |
| 12 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 13 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 14 | +# See the License for the specific language governing permissions and |
| 15 | +# limitations under the License. |
| 16 | + |
| 17 | +import numpy as np |
| 18 | + |
| 19 | +import dpctl.tensor as dpt |
| 20 | +import dpctl.utils as du |
| 21 | + |
| 22 | +from ._manipulation_functions import _broadcast_shape_impl |
| 23 | +from ._type_utils import _to_device_supported_dtype |
| 24 | + |
| 25 | + |
| 26 | +def _allclose_complex_fp(z1, z2, atol, rtol, equal_nan): |
| 27 | + z1r = dpt.real(z1) |
| 28 | + z1i = dpt.imag(z1) |
| 29 | + z2r = dpt.real(z2) |
| 30 | + z2i = dpt.imag(z2) |
| 31 | + if equal_nan: |
| 32 | + check1 = dpt.all(dpt.isnan(z1r) == dpt.isnan(z2r)) and dpt.all( |
| 33 | + dpt.isnan(z1i) == dpt.isnan(z2i) |
| 34 | + ) |
| 35 | + else: |
| 36 | + check1 = ( |
| 37 | + dpt.logical_not(dpt.any(dpt.isnan(z1r))) |
| 38 | + and dpt.logical_not(dpt.any(dpt.isnan(z1i))) |
| 39 | + ) and ( |
| 40 | + dpt.logical_not(dpt.any(dpt.isnan(z2r))) |
| 41 | + and dpt.logical_not(dpt.any(dpt.isnan(z2i))) |
| 42 | + ) |
| 43 | + if not check1: |
| 44 | + return check1 |
| 45 | + mr = dpt.isinf(z1r) |
| 46 | + mi = dpt.isinf(z1i) |
| 47 | + check2 = dpt.all(mr == dpt.isinf(z2r)) and dpt.all(mi == dpt.isinf(z2i)) |
| 48 | + if not check2: |
| 49 | + return check2 |
| 50 | + check3 = dpt.all(z1r[mr] == z2r[mr]) and dpt.all(z1i[mi] == z2i[mi]) |
| 51 | + if not check3: |
| 52 | + return check3 |
| 53 | + mr = dpt.isfinite(z1r) |
| 54 | + mi = dpt.isfinite(z1i) |
| 55 | + mv1 = z1r[mr] |
| 56 | + mv2 = z2r[mr] |
| 57 | + check4 = dpt.all( |
| 58 | + dpt.abs(mv1 - mv2) |
| 59 | + < atol + rtol * dpt.maximum(dpt.abs(mv1), dpt.abs(mv2)) |
| 60 | + ) |
| 61 | + if not check4: |
| 62 | + return check4 |
| 63 | + mv1 = z1i[mi] |
| 64 | + mv2 = z2i[mi] |
| 65 | + check5 = dpt.all( |
| 66 | + dpt.abs(mv1 - mv2) |
| 67 | + < atol + rtol * dpt.maximum(dpt.abs(mv1), dpt.abs(mv2)) |
| 68 | + ) |
| 69 | + return check5 |
| 70 | + |
| 71 | + |
| 72 | +def _allclose_real_fp(r1, r2, atol, rtol, equal_nan): |
| 73 | + if equal_nan: |
| 74 | + check1 = dpt.all(dpt.isnan(r1) == dpt.isnan(r2)) |
| 75 | + else: |
| 76 | + check1 = dpt.logical_not(dpt.any(dpt.isnan(r1))) and dpt.logical_not( |
| 77 | + dpt.any(dpt.isnan(r2)) |
| 78 | + ) |
| 79 | + if not check1: |
| 80 | + return check1 |
| 81 | + mr = dpt.isinf(r1) |
| 82 | + check2 = dpt.all(mr == dpt.isinf(r2)) |
| 83 | + if not check2: |
| 84 | + return check2 |
| 85 | + check3 = dpt.all(r1[mr] == r2[mr]) |
| 86 | + if not check3: |
| 87 | + return check3 |
| 88 | + m = dpt.isfinite(r1) |
| 89 | + mv1 = r1[m] |
| 90 | + mv2 = r2[m] |
| 91 | + check4 = dpt.all( |
| 92 | + dpt.abs(mv1 - mv2) |
| 93 | + < atol + rtol * dpt.maximum(dpt.abs(mv1), dpt.abs(mv2)) |
| 94 | + ) |
| 95 | + return check4 |
| 96 | + |
| 97 | + |
| 98 | +def _allclose_others(r1, r2): |
| 99 | + return dpt.all(r1 == r2) |
| 100 | + |
| 101 | + |
| 102 | +def allclose(a1, a2, atol=1e-5, rtol=1e-8, equal_nan=False): |
| 103 | + """allclose(a1, a2, atol=1e-5, rtol=1e-8) |
| 104 | +
|
| 105 | + Returns True if two arrays are element-wise equal within tolerance. |
| 106 | + """ |
| 107 | + if not isinstance(a1, dpt.usm_ndarray): |
| 108 | + raise TypeError( |
| 109 | + f"Expected dpctl.tensor.usm_ndarray type, got {type(a1)}." |
| 110 | + ) |
| 111 | + if not isinstance(a2, dpt.usm_ndarray): |
| 112 | + raise TypeError( |
| 113 | + f"Expected dpctl.tensor.usm_ndarray type, got {type(a2)}." |
| 114 | + ) |
| 115 | + atol = float(atol) |
| 116 | + rtol = float(rtol) |
| 117 | + equal_nan = bool(equal_nan) |
| 118 | + exec_q = du.get_execution_queue(tuple(a.sycl_queue for a in (a1, a2))) |
| 119 | + if exec_q is None: |
| 120 | + raise du.ExecutionPlacementError( |
| 121 | + "Execution placement can not be unambiguously inferred " |
| 122 | + "from input arguments." |
| 123 | + ) |
| 124 | + res_sh = _broadcast_shape_impl([a1.shape, a2.shape]) |
| 125 | + b1 = a1 |
| 126 | + b2 = a2 |
| 127 | + if b1.dtype == b2.dtype: |
| 128 | + res_dt = b1.dtype |
| 129 | + else: |
| 130 | + res_dt = np.promote_types(b1.dtype, b2.dtype) |
| 131 | + res_dt = _to_device_supported_dtype(res_dt, exec_q.sycl_device) |
| 132 | + b1 = dpt.astype(b1, res_dt) |
| 133 | + b2 = dpt.astype(b2, res_dt) |
| 134 | + |
| 135 | + b1 = dpt.broadcast_to(b1, res_sh) |
| 136 | + b2 = dpt.broadcast_to(b2, res_sh) |
| 137 | + |
| 138 | + k = b1.dtype.kind |
| 139 | + if k == "c": |
| 140 | + return _allclose_complex_fp(b1, b2, atol, rtol, equal_nan) |
| 141 | + elif k == "f": |
| 142 | + return _allclose_real_fp(b1, b2, atol, rtol, equal_nan) |
| 143 | + else: |
| 144 | + return _allclose_others(b1, b2) |
0 commit comments