|
1 |
| -# datadog-lambda-layer-python |
| 1 | +# datadog-lambda-layer-python |
| 2 | + |
| 3 | +Datadog Lambda Layer for Python (2.7, 3.6 and 3.7) enables custom metric submission from AWS Lambda functions, and distributed tracing between serverful and serverless environments. |
| 4 | + |
| 5 | +## Installation |
| 6 | + |
| 7 | +Datadog Lambda Layer can be added to a Lambda function via AWS Lambda console, [AWS CLI](https://docs.aws.amazon.com/lambda/latest/dg/configuration-layers.html#configuration-layers-using) or [Serverless Framework](https://serverless.com/framework/docs/providers/aws/guide/layers/#using-your-layers) using the following ARN. |
| 8 | + |
| 9 | +``` |
| 10 | +arn:aws:lambda:<AWS_REGION>:464622532012:layer:Datadog-Python37:<VERSION> |
| 11 | +``` |
| 12 | + |
| 13 | +Replace `<AWS_REGION>` with the region where your Lambda function lives, and `<VERSION>` with the desired (or the latest) version that can be found from [CHANGELOG](CHANGELOG.md). |
| 14 | + |
| 15 | +The following Datadog environment variables must be defined via [AWS CLI](https://docs.aws.amazon.com/lambda/latest/dg/env_variables.html) or [Serverless Framework](https://serverless-stack.com/chapters/serverless-environment-variables.html): |
| 16 | + |
| 17 | +* DATADOG_API_KEY |
| 18 | +* DATADOG_APP_KEY |
| 19 | + |
| 20 | +### The Serverless Framework |
| 21 | + |
| 22 | +If your Lambda function is deployed using the Serverless Framework, refer to this sample `serverless.yml`. |
| 23 | + |
| 24 | +```yaml |
| 25 | +provider: |
| 26 | + name: aws |
| 27 | + runtime: python3.7 |
| 28 | + tracing: |
| 29 | + lambda: true |
| 30 | + apiGateway: true |
| 31 | + |
| 32 | +functions: |
| 33 | + hello: |
| 34 | + handler: handler.hello |
| 35 | + events: |
| 36 | + - http: |
| 37 | + path: hello |
| 38 | + method: get |
| 39 | + layers: |
| 40 | + - arn:aws:lambda:us-east-1:464622532012:layer:Datadog-Python37:1 |
| 41 | + environment: |
| 42 | + DATADOG_API_KEY: xxx |
| 43 | + DATADOG_APP_KEY: yyy |
| 44 | +``` |
| 45 | +
|
| 46 | +
|
| 47 | +## Basic Usage |
| 48 | +
|
| 49 | +```python |
| 50 | +import requests |
| 51 | +from datadog_lambda.wrapper import datadog_lambda_wrapper |
| 52 | +from datadog_lambda.metric import lambda_metric |
| 53 | + |
| 54 | +@datadog_lambda_wrapper |
| 55 | +def lambda_handler(event, context): |
| 56 | + lambda_metric("my_metric", 10, tags=['tag:value']) |
| 57 | + requests.get("https://www.datadoghq.com") |
| 58 | +``` |
| 59 | +
|
| 60 | +
|
| 61 | +## Custom Metrics |
| 62 | +
|
| 63 | +Custom metrics can be submitted using `lambda_metric` and the Lambda handler function needs to be decorated with `@datadog_lambda_wrapper`. The metrics are submitted as [distribution metrics](https://docs.datadoghq.com/graphing/metrics/distributions/). |
| 64 | + |
| 65 | +```python |
| 66 | +from datadog_lambda.metric import lambda_metric |
| 67 | +
|
| 68 | +@datadog_lambda_wrapper |
| 69 | +def lambda_handler(event, context): |
| 70 | + lambda_metric( |
| 71 | + "coffee_house.order_value", # metric |
| 72 | + 12.45, # value |
| 73 | + tags=['product:latte', 'order:online'] # tags |
| 74 | + ) |
| 75 | +``` |
| 76 | + |
| 77 | +### VPC |
| 78 | +If your Lambda function is associated with a VPC, you need to ensure it has [access to the public internet](https://aws.amazon.com/premiumsupport/knowledge-center/internet-access-lambda-function/). |
| 79 | + |
| 80 | + |
| 81 | +## Distributed Tracing |
| 82 | + |
| 83 | +[Distributed tracing](https://docs.datadoghq.com/tracing/guide/distributed_tracing/?tab=python) allows you to propagate a trace context from a service running on a host to a service running on AWS Lambda, and vice versa, so you can see performance end-to-end. Linking is implemented by injecting Datadog trace context into the HTTP request headers. |
| 84 | + |
| 85 | +Distributed tracing headers are language agnostic, e.g., a trace can be propagated between a Java service running on a host to a Lambda function written in Python. |
| 86 | + |
| 87 | +Because the trace context is propagated through HTTP request headers, the Lambda function needs to be triggered by AWS API Gateway or AWS Application Load Balancer. |
| 88 | + |
| 89 | +To enable this feature, you simple need to decorate your Lambda handler function with `@datadog_lambda_wrapper`. |
| 90 | + |
| 91 | +```python |
| 92 | +import requests |
| 93 | +from datadog_lambda.wrapper import datadog_lambda_wrapper |
| 94 | +
|
| 95 | +@datadog_lambda_wrapper |
| 96 | +def lambda_handler(event, context): |
| 97 | + requests.get("https://www.datadoghq.com") |
| 98 | +``` |
| 99 | + |
| 100 | +Note, the Datadog Lambda Layer is only needed to enable *distributed* tracing between Lambda and non-Lambda services. For standalone Lambda functions, traces can be found in Datadog APM after configuring [the X-Ray integration](https://docs.datadoghq.com/integrations/amazon_xray/). |
| 101 | + |
| 102 | +### Patching |
| 103 | + |
| 104 | +By default, widely used HTTP client libraries, such as `requests`, `urllib2` and `urllib.request` are patched automatically to inject Datadog trace context into outgoing requests. |
| 105 | + |
| 106 | +You can also manually retrieve the Datadog trace context (i.e., http headers in a Python dict) and inject it to request headers when needed. |
| 107 | + |
| 108 | +```python |
| 109 | +import requests |
| 110 | +from datadog_lambda.wrapper import datadog_lambda_wrapper |
| 111 | +from datadog_lambda.tracing import get_dd_trace_context |
| 112 | +
|
| 113 | +@datadog_lambda_wrapper |
| 114 | +def lambda_handler(event, context): |
| 115 | + headers = get_dd_trace_context() |
| 116 | + requests.get("https://www.datadoghq.com", headers=headers) |
| 117 | +``` |
| 118 | + |
| 119 | +### Sampling |
| 120 | + |
| 121 | +The traces for your Lambda function are converted by Datadog from AWS X-Ray traces. X-Ray needs to sample the traces that the Datadog tracing agent decides to sample, in order to collect as many complete traces as possible. You can create X-Ray sampling rules to ensure requests with header `x-datadog-sampling-priority:1` or `x-datadog-sampling-priority:2` via API Gateway always get sampled by X-Ray. |
| 122 | + |
| 123 | +These rules can be created using the following AWS CLI command. |
| 124 | + |
| 125 | +```bash |
| 126 | +aws xray create-sampling-rule --cli-input-json file://datadog-sampling-priority-1.json |
| 127 | +aws xray create-sampling-rule --cli-input-json file://datadog-sampling-priority-2.json |
| 128 | +``` |
| 129 | + |
| 130 | +The file content for `datadog-sampling-priority-1.json`: |
| 131 | +```json |
| 132 | +{ |
| 133 | + "SamplingRule": { |
| 134 | + "RuleName": "Datadog-Sampling-Priority-1", |
| 135 | + "ResourceARN": "*", |
| 136 | + "Priority": 9998, |
| 137 | + "FixedRate": 1, |
| 138 | + "ReservoirSize": 100, |
| 139 | + "ServiceName": "*", |
| 140 | + "ServiceType": "AWS::APIGateway::Stage", |
| 141 | + "Host": "*", |
| 142 | + "HTTPMethod": "*", |
| 143 | + "URLPath": "*", |
| 144 | + "Version": 1, |
| 145 | + "Attributes": { |
| 146 | + "x-datadog-sampling-priority": "1" |
| 147 | + } |
| 148 | + } |
| 149 | +} |
| 150 | +``` |
| 151 | + |
| 152 | +The file content for `datadog-sampling-priority-2.json`: |
| 153 | +```json |
| 154 | +{ |
| 155 | + "SamplingRule": { |
| 156 | + "RuleName": "Datadog-Sampling-Priority-2", |
| 157 | + "ResourceARN": "*", |
| 158 | + "Priority": 9999, |
| 159 | + "FixedRate": 1, |
| 160 | + "ReservoirSize": 100, |
| 161 | + "ServiceName": "*", |
| 162 | + "ServiceType": "AWS::APIGateway::Stage", |
| 163 | + "Host": "*", |
| 164 | + "HTTPMethod": "*", |
| 165 | + "URLPath": "*", |
| 166 | + "Version": 1, |
| 167 | + "Attributes": { |
| 168 | + "x-datadog-sampling-priority": "2" |
| 169 | + } |
| 170 | + } |
| 171 | +} |
| 172 | +``` |
| 173 | + |
| 174 | +### Non-proxy integration |
| 175 | + |
| 176 | +If your Lambda function is triggered by API Gateway via [the non-proxy integration](https://docs.aws.amazon.com/apigateway/latest/developerguide/getting-started-lambda-non-proxy-integration.html), then you have to [set up a mapping template](https://aws.amazon.com/premiumsupport/knowledge-center/custom-headers-api-gateway-lambda/), which passes the Datadog trace context from the incoming HTTP request headers to the Lambda function via the `event` object. |
| 177 | + |
| 178 | +If your Lambda function is deployed by the Serverless Framework, such a mapping template gets created by default. |
| 179 | + |
| 180 | + |
| 181 | +## Opening Issues |
| 182 | + |
| 183 | +If you encounter a bug with this package, we want to hear about it. Before opening a new issue, search the existing issues to avoid duplicates. |
| 184 | + |
| 185 | +When opening an issue, include the Datadog Lambda Layer version, Python version, and stack trace if available. In addition, include the steps to reproduce when appropriate. |
| 186 | + |
| 187 | +You can also open an issue for a feature request. |
| 188 | + |
| 189 | + |
| 190 | +## Contributing |
| 191 | + |
| 192 | +If you find an issue with this package and have a fix, please feel free to open a pull request following the [procedures](CONTRIBUTING.md). |
| 193 | + |
| 194 | + |
| 195 | +## License |
| 196 | + |
| 197 | +TBA |
0 commit comments