|
| 1 | +import java.util.ArrayDeque; |
| 2 | +import java.util.ArrayList; |
| 3 | +import java.util.HashMap; |
| 4 | +import java.util.List; |
| 5 | +import java.util.Map; |
| 6 | +import java.util.Queue; |
| 7 | + |
| 8 | +public class Prerequisites { |
| 9 | + public boolean prerequisites(int n, int[][] prerequisites) { |
| 10 | + Map<Integer, List<Integer>> graph = new HashMap<>(); |
| 11 | + int[] inDegrees = new int[n]; |
| 12 | + // Represent the graph as an adjacency list and record the in- |
| 13 | + // degree of each course. |
| 14 | + for (int[] edge : prerequisites) { |
| 15 | + int prerequisite = edge[0]; |
| 16 | + int course = edge[1]; |
| 17 | + graph.putIfAbsent(prerequisite, new ArrayList<>()); |
| 18 | + graph.get(prerequisite).add(course); |
| 19 | + inDegrees[course]++; |
| 20 | + } |
| 21 | + Queue<Integer> queue = new ArrayDeque<>(); |
| 22 | + // Add all courses with an in-degree of 0 to the queue. |
| 23 | + for (int i = 0; i < n; i++) { |
| 24 | + if (inDegrees[i] == 0) { |
| 25 | + queue.offer(i); |
| 26 | + } |
| 27 | + } |
| 28 | + int enrolledCourses = 0; |
| 29 | + // Perform topological sort. |
| 30 | + while (!queue.isEmpty()) { |
| 31 | + int node = queue.poll(); |
| 32 | + enrolledCourses++; |
| 33 | + if (graph.containsKey(node)) { |
| 34 | + for (int neighbor : graph.get(node)) { |
| 35 | + inDegrees[neighbor]--; |
| 36 | + // If the in-degree of a neighboring course becomes 0, add |
| 37 | + // it to the queue. |
| 38 | + if (inDegrees[neighbor] == 0) { |
| 39 | + queue.offer(neighbor); |
| 40 | + } |
| 41 | + } |
| 42 | + } |
| 43 | + } |
| 44 | + // Return true if we've successfully enrolled in all courses. |
| 45 | + return enrolledCourses == n; |
| 46 | + } |
| 47 | +} |
0 commit comments